A032164 Number of aperiodic necklaces of n beads of 6 colors; dimensions of free Lie algebras.
1, 6, 15, 70, 315, 1554, 7735, 39990, 209790, 1119720, 6045837, 32981550, 181394535, 1004668770, 5597420295, 31345665106, 176319264240, 995685849690, 5642219252460, 32071565263710, 182807918979777
Offset: 0
References
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1289 (terms 0..200 from T. D. Noe)
- C. G. Bower, Transforms (2)
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
- Index entries for sequences related to Lyndon words
Programs
-
Mathematica
f[d_] := MoebiusMu[d]*6^(n/d)/n; a[n_] := Total[f /@ Divisors[n]]; a[0] = 1; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 07 2011 *) mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,6],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
-
PARI
a(n) = if (n==0, 1, sumdiv(n, d, moebius(d)*6^(n/d)/n)); \\ Michel Marcus, Dec 01 2015
Formula
"CHK" (necklace, identity, unlabeled) transform of 6, 0, 0, 0...
a(n) = Sum_{d|n} mu(d)*6^(n/d)/n, for n>0.
G.f.: k=6, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
Comments