A074650
Table T(n,k) read by downward antidiagonals: number of Lyndon words (aperiodic necklaces) with n beads of k colors, n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 8, 3, 0, 6, 10, 20, 18, 6, 0, 7, 15, 40, 60, 48, 9, 0, 8, 21, 70, 150, 204, 116, 18, 0, 9, 28, 112, 315, 624, 670, 312, 30, 0, 10, 36, 168, 588, 1554, 2580, 2340, 810, 56, 0, 11, 45, 240, 1008, 3360, 7735, 11160, 8160, 2184, 99, 0
Offset: 1
T(4, 3) counts the 18 ternary prime strings of length 4 which are: 0001, 0002, 0011, 0012, 0021, 0022, 0102, 0111, 0112, 0121, 0122, 0211, 0212, 0221, 0222, 1112, 1122, 1222.
Square array starts:
1, 2, 3, 4, 5, 6, 7, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 2, 8, 20, 40, 70, 112, ...
0, 3, 18, 60, 150, 315, 588, ...
0, 6, 48, 204, 624, 1554, 3360, ...
0, 9, 116, 670, 2580, 7735, 19544, ...
0, 18, 312, 2340, 11160, 39990, 117648, ...
...
The transposed array starts:
1 0 0 0 0 0 0 0 0 0,
2 1 2 3 6 9 18 30 56 99,
3 3 8 18 48 116 312 810 2184 5880,
4 6 20 60 204 670 2340 8160 29120 104754,
5 10 40 150 624 2580 11160 48750 217000 976248,
6 15 70 315 1554 7735 39990 209790 1119720 6045837,
7 21 112 588 3360 19544 117648 720300 4483696 28245840,
8 28 168 1008 6552 43596 299592 2096640 14913024 107370900,
9 36 240 1620 11808 88440 683280 5380020 43046640 348672528,
10 45 330 2475 19998 166485 1428570 12498750 111111000 999989991,
11 55 440 3630 32208 295020 2783880 26793030 261994040 2593726344,
12 66 572 5148 49764 497354 5118828 53745120 573308736 6191711526,
...
The initial antidiagonals are:
1
2 0
3 1 0
4 3 2 0
5 6 8 3 0
6 10 20 18 6 0
7 15 40 60 48 9 0
8 21 70 150 204 116 18 0
9 28 112 315 624 670 312 30 0
10 36 168 588 1554 2580 2340 810 56 0
11 45 240 1008 3360 7735 11160 8160 2184 99 0
12 55 330 1620 6552 19544 39990 48750 29120 5880 186 0
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 97 (2.3.74)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 495.
- D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, pp. 26-27, Addison-Wesley, 2005.
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- B. Hayes, The invention of the genetic code, American Scientist, Vol. 86, No. 1 (January-February 1998), pp. 8-14.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Irem Kucukoglu and Yilmaz Simsek, On k-ary Lyndon words and their generating functions, AIP Conference Proceedings 1863, 300004 (2017).
- R. C. Lyndon, On Burnside's problem, Transactions of the American Mathematical Society 77, (1954) 202-215.
- Dominique Perrin and Christophe Reutenauer, Hall sets, Lazard sets and comma-free codes, arXiv preprint arXiv:1609.05438 [math.CO] (2016).
- Dominique Perrin and Christophe Reutenauer, Hall sets, Lazard sets and comma-free codes, Discrete Math., 341 (2018), 232-243.
- Dominique Perrin and Christophe Reutenauer, Hall sets, Lazard sets and comma-free codes, Discrete Math., 341 (2018), 232-243. [Annotated scanned copy of page 236 only.]
- Wikipedia, Lyndon word
- Index entries for sequences related to Lyndon words
Columns k:
A001037 (k=2),
A027376 (k=3),
A027377 (k=4),
A001692 (k=5),
A032164 (k=6),
A001693 (k=7),
A027380 (k=8),
A027381 (k=9),
A032165 (k=10),
A032166 (k=11),
A032167 (k=12),
A060216 (k=13),
A060217 (k=14),
A060218 (k=15),
A060219 (k=16),
A060220 (k=17),
A060221 (k=18),
A060222 (k=19).
-
t:= func< n,k | (&+[MoebiusMu(Floor(n/d))*k^d: d in Divisors(n)])/n >; // array
A074650:= func< n,k | t(k, n-k+1) >; // downward diagonals
[A074650(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Aug 01 2024
-
with(numtheory):
T:= proc(n, k) add(mobius(n/d)*k^d, d=divisors(n))/n end:
seq(seq(T(i, 1+d-i), i=1..d), d=1..11); # Alois P. Heinz, Mar 28 2008
-
max = 12; t[n_, k_] := Total[ MoebiusMu[n/#]*k^# & /@ Divisors[n]]/n; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 18 2011, after Maple *)
-
T(n,k)=sumdiv(n,d,moebius(n/d)*k^d)/n \\ Charles R Greathouse IV, Oct 18 2011
-
# This algorithm generates and counts all k-ary n-tuples (a_1,..,a_n) such
# that the string a_1...a_n is prime. It is algorithm F in Knuth 7.2.1.1.
def A074650(n, k):
a = [0]*(n+1); a[0]=-1
j = 1; count = 0
while(j != 0) :
if j == n : count += 1; # print("".join(map(str,a[1:])))
else: j = n
while a[j] >= k-1 : j -= 1
a[j] += 1
for i in (j+1..n): a[i] = a[i-j]
return count # Peter Luschny, Aug 14 2012
A032170
"CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...
Original entry on oeis.org
1, 2, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 1
- Michael De Vlieger, Table of n, a(n) for n = 1..2400
- Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See line N = 6 in Table 1 (p. 6).
- C. G. Bower, Transforms (2).
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Arnold's cat map.
- Wikipedia, Arnold's cat map.
- Index entries for sequences related to Lyndon words
Cf.
A000010,
A001221,
A001906,
A004146,
A032164,
A032165,
A032166,
A032167,
A032198,
A005248,
A108529,
A113788.
-
Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* Michael De Vlieger, Nov 18 2017 *)
A054721
Number of 6-ary sequences with primitive period n.
Original entry on oeis.org
1, 6, 30, 210, 1260, 7770, 46410, 279930, 1678320, 10077480, 60458370, 362797050, 2176734420, 13060694010, 78363884130, 470184976590, 2821108227840, 16926659444730, 101559946544280, 609359740010490, 3656158379595540, 21936950640097710, 131621703479470050
Offset: 0
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(mobius(d)*6^(n/d), d=divisors(n))):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 21 2012
-
a[0] = 1; a[n_] := Sum[MoebiusMu[d]*6^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014 *)
A001693
Number of degree-n irreducible polynomials over GF(7); dimensions of free Lie algebras.
Original entry on oeis.org
1, 7, 21, 112, 588, 3360, 19544, 117648, 720300, 4483696, 28245840, 179756976, 1153430600, 7453000800, 48444446376, 316504099520, 2077057800300, 13684147881600, 90467419857752, 599941851861744
Offset: 0
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..1186 (terms 0..200 from T. D. Noe)
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- G. J. Simmons, The number of irreducible polynomials of degree n over GF(p), Amer. Math. Monthly, 77 (1970), 743-745.
- G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
- Index entries for sequences related to Lyndon words
-
with(numtheory); A001693 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*7^(n/d); od; RETURN(s/n); fi; end;
-
a[n_]:=(1/n)*Sum[MoebiusMu[d]*7^(n/d), {d, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Aug 31 2011, after formula *)
mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,7],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
-
a(n) = if(n, sumdiv(n, d, moebius(d)*7^(n/d))/n, 1) \\ Altug Alkan, Dec 01 2015
A056291
Number of primitive (period n) n-bead necklaces with exactly six different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 2160, 23940, 211680, 1643544, 11748240, 79419060, 516257280, 3262440960, 20193277104, 123071683140, 741419995680, 4427489935680, 26264144909520, 155018839412052, 911509010152560, 5344538372696880, 31272099902089200, 182707081042818360
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
with(numtheory):
b:= proc(n, k) option remember; `if`(n=0, 1,
add(mobius(n/d)*k^d, d=divisors(n))/n)
end:
a:= n-> add(b(n, 6-j)*binomial(6, j)*(-1)^j, j=0..6):
seq(a(n), n=1..30); # Alois P. Heinz, Jan 25 2015
-
b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^# &]/n];
a[n_] := Sum[b[n, 6 - j]*Binomial[6, j]*(-1)^j, {j, 0, 6}];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 06 2018, after Alois P. Heinz *)
A056302
Number of primitive (period n) n-bead necklace structures using a maximum of six different colored beads.
Original entry on oeis.org
1, 1, 2, 5, 11, 39, 125, 532, 2301, 11010, 54681, 284023, 1509851, 8194902, 45080652, 250641356, 1404374247, 7917209005, 44848645457, 255055220735, 1455247360000, 8326191235902, 47752990403133
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056347
Number of primitive (period n) bracelets using a maximum of six different colored beads.
Original entry on oeis.org
6, 15, 50, 210, 882, 4220, 20640, 107100, 563730, 3036411, 16514100, 90778485, 502474350, 2799199380, 15673672238, 88162569180, 497847963690, 2821127257950, 16035812864940, 91404065292036
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,6],{x,0,mx}],x] (* Herbert Kociemba, Nov 28 2016 *)
A058821
Dimensions of homogeneous subspaces of shuffle algebra over 6-letter alphabet (see A058766 for 2-letter case).
Original entry on oeis.org
1, 6, 21, 146, 981, 6222, 38921, 239946, 1469826, 8957976, 54420339, 329815506, 1995387801, 12056025246, 72766743801, 438839319470, 2644790643216, 15930973595046, 95917737415956, 577288174746786, 3473350521083199, 20892333943230346, 125638899138654861
Offset: 0
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001
- M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).
-
a[n_] := 6^n - DivisorSum[n, MoebiusMu[n/#] * 6^# &] / n; a[0] = 1; a[1] = 6; Array[a, 23, 0] (* Amiram Eldar, Aug 13 2023 *)
Showing 1-8 of 8 results.
Comments