cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032171 Number of rooted compound windmills (mobiles) of n nodes with no symmetries.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 23, 59, 148, 385, 1006, 2678, 7170, 19421, 52933, 145364, 401421, 1114713, 3109710, 8713076, 24506121, 69168705, 195849114, 556165311, 1583601840, 4520226558, 12931917204, 37075154703
Offset: 1

Views

Author

Keywords

Comments

Also the number of locally Lyndon plane trees with n nodes, where a plane tree is locally Lyndon if the sequence of branches directly under any given node is a Lyndon word. - Gus Wiseman, Sep 05 2018

Examples

			From _Gus Wiseman_, Sep 05 2018: (Start)
The a(6) = 10 locally Lyndon plane trees:
  (((((o)))))
  (((o(o))))
  ((o((o))))
  (o(((o))))
  ((o)((o)))
  ((oo(o)))
  (o(o(o)))
  (oo((o)))
  (o(o)(o))
  (ooo(o))
(End)
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Module[{A}, A[, ] = 0; If[k < 1 || k > n, 0, For[j = 1, j <= n, j++, A[x_, y_] = x*y - x*Sum[MoebiusMu[i]/i * Log[1 -  A [x^i, y^i]] + O[x]^j // Normal , {i, 1, j}]]; Coefficient[Coefficient[A[x, y], x, n], y, k]]];
    a[n_] := a[n] = Sum[T[n, k], {k, 1, n}];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 28}] (* Jean-François Alcover, Jun 30 2017, using Michael Somos' code for A055363 *)
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    lynplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[lynplane/@c],LyndonQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[lynplane[n]],{n,10}] (* Gus Wiseman, Sep 05 2018 *)
  • PARI
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=O(1));for(i=1, n, p=1+CHK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018

Formula

Shifts left under "CHK" (necklace, identity, unlabeled) transform.
From Petros Hadjicostas, Dec 03 2017: (Start)
a(n+1) = (1/n)*Sum_{d|n} mu(n/d)*c(d), where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) with a(1) = c(1) = 1.
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then Sum_{n>=1} a(n+1)*x^n = -Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)).
The g.f. of the auxiliary sequence (c(n): n>=1) is C(x) = Sum_{n>=1} c(n)*x^n = x*(dA(x)/dx)/(1-A(x)) = x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 147*x^6 + 414*x^7 + 1203*x^8 + ...
(End)