cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032173 Sequence (a(n): n >= 1) that shifts left 2 places under the "CHK" (necklace, identity, unlabeled) transform and has initial terms a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 12, 28, 55, 122, 258, 574, 1254, 2813, 6283, 14220, 32237, 73631, 168660, 388331, 896790, 2078822, 4832343, 11266422, 26332119, 61694574, 144858260, 340829231, 803427128, 1897269215, 4487725726
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Dec 29 2018: (Start)
a(n+2) = (1/n)*Sum_{d|n} mu(n/d)*c(d), where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) with a(1) = a(2) = 1, c(1) = 1, and c(2) = 3.
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then Sum_{n>=1} a(n+2)*x^n = -Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)).
The g.f. of the auxiliary sequence (c(n): n>=1) is C(x) = Sum_{n>=1} c(n)*x^n = x*(dA(x)/dx)/(1-A(x)) = x + 3*x^2 + 7*x^3 + 15*x^4 + 36*x^5 + 81*x^6 + 197*x^7 + 455*x^8 + 1105*x^9 + 2618*x^10 + ... (The auxiliary sequence is given by sequence A322913.)
(End)
The first two terms of the sequence must be specified. In general, if the sequence (b(n): n >= 1) is such that (b(n+2): n >= 1) = CHK((b(n): n >= 1)), then b(3) = b(1), b(4) = (1/2)*(b(1)^2 + 2*b(2) - b(1)), b(5) = (b(1)/3)*(b(1)^2 + 3*b(2) + 2), and so on. - Petros Hadjicostas, Dec 31 2018

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1; c[1] = 1; c[2] = 3;
    a[n_] := a[n] = 1/(n-2) Sum[MoebiusMu[(n-2)/d] c[d], {d, Divisors[n-2]}];
    c[n_] := c[n] = n a[n] + Sum[c[s] a[n-s], {s, 1, n-1}];
    Array[a, 32] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=1+O(x));for(i=1, n\2, p=1+x+x*CHK(x*p, 2*i)); Vec(p+O(x^n))} \\ Andrew Howroyd, Jun 20 2018

Extensions

Name modified by Petros Hadjicostas, Jan 01 2019