cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032246 "DHK[ 5 ]" (bracelet, identity, unlabeled, 5 parts) transform of 1,1,1,1,...

Original entry on oeis.org

2, 4, 10, 16, 28, 42, 64, 90, 126, 168, 224, 288, 370, 462, 576, 704, 858, 1030, 1232, 1456, 1716, 2002, 2330, 2688, 3094, 3536, 4032, 4570, 5168, 5814, 6528, 7296, 8140, 9044, 10032, 11088, 12236, 13460, 14784, 16192, 17710, 19320, 21050, 22880, 24840, 26910
Offset: 8

Views

Author

Keywords

Comments

a(n) is the number of bracelets with k = 5 black beads and n-k white beads which have no reflection symmetry. - Herbert Kociemba, Nov 27 2016
From Petros Hadjicostas, Feb 24 2019: (Start)
When k is odd >= 3, the DHK[k] transform of sequence c = (c(n): n >= 1), whose g.f. is C(x) = Sum_{n>=1} c(n)*x^n, has g.f. Sum_{n>=1} (DHK[k] c)n*x^n = (1/2)*Sum{d|k} mu(d)*((1/k)*C(x^d)^(k/d) - C(x^d)*C(x^(2*d))^((k/d) - 1)/2)).
For the current sequence we have k = 5 and c(n) = 1 for all n >= 1. Hence, C(x) = x/(1-x) and A(x) = Sum_{n>=1} a(n)*x^n = (x^k/2)*Sum_{d|k} mu(d)*((1/k)*(1-x^d)^(-k/d) - (1-x^d)^(-1)*(1-x^(2*d))^(-((k/d) - 1)/2)).
The latter g.f. agrees with Herbert Kociemba's formula found below only when k is an odd prime. The reason is that (DHK[k] c)_n, with c=(1,1,1,...), is the number of aperiodic bracelets without reflection symmetry with k black beads and n-k white beads, while Herbert Kociemba's formula counts all (periodic and aperiodic) bracelets without reflection symmetry with k black beads and n-k white beads. Hence, in the case k is an odd prime, the two formulas agree.
When k is even, the g.f. of the DHK[k] transform of sequence c = (c(n): n >= 1) is much more complicated.
Note that Herbert Kociemba's formula for counting all (periodic and aperiodic) bracelets with no reflection symmetry is still valid even when k is even; e.g., see sequence A008804 for the case k=4. For k = 4, all bracelets with 4 black beads and n-k = n-4 white beads that have no reflection symmetry are aperiodic, but this is not true anymore for k even >= 6.
(End)

Examples

			G.f. = 2*x^8 + 4*x^9 + 10*x^10 + 16*x^11 + 28*x^12 + 42*x^13 + 64*x^14 + ...
		

Crossrefs

Cf. A001399, A008804, A032248. Column k = 5 of A180472.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)) )); // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    gf[x_,k_]:=x^k/2 (1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])-(1+x)/(1-x^2)^Floor[k/2+1]); CoefficientList[Series[gf[x,5],{x,0,50}],x] (* Herbert Kociemba, Nov 27 2016 *)
    Drop[CoefficientList[Series[2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)), {x,0,50}], x], 8] (* G. C. Greubel, Feb 25 2019 *)
  • PARI
    {a(n) = if( n<0, n=5-n); polcoeff( 2 * x^8 / ((1-x)^2*(1-x^2)^2*(1-x^5)) + x * O(x^n), n)}; /* Michael Somos, Nov 28 2016 */
    
  • PARI
    Vec(2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)) + O(x^40)) \\ Colin Barker, Mar 13 2019
    
  • Sage
    a=(2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5))).series(x, 50).coefficients(x, sparse=False); a[8:] # G. C. Greubel, Feb 25 2019

Formula

G.f.: 2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)).
From Herbert Kociemba, Nov 27 2016: (Start)
More generally gf(k) is the g.f. for the number of bracelets without reflection symmetry with k black beads and n-k white beads.
gf(k): x^k/2 * ((1/k)*Sum_{n|k} phi(n)/(1 - x^n)^(k/n) - (1 + x)/(1-x^2)^floor(k/2 + 1)). (End)
a(n) = a(5-n) for all n in Z. - Michael Somos, Nov 28 2016
0 = a(n) - 2*a(n+1) - a(n+2) + 4*a(n+3) - a(n+4) - 3*a(n+5) + 3*a(n+6) + a(n+7) - 4*a(n+8) + a(n+9) + 2*a(n+10) - a(n+11) for all n in Z. - Michael Somos, Nov 28 2016