A032246 "DHK[ 5 ]" (bracelet, identity, unlabeled, 5 parts) transform of 1,1,1,1,...
2, 4, 10, 16, 28, 42, 64, 90, 126, 168, 224, 288, 370, 462, 576, 704, 858, 1030, 1232, 1456, 1716, 2002, 2330, 2688, 3094, 3536, 4032, 4570, 5168, 5814, 6528, 7296, 8140, 9044, 10032, 11088, 12236, 13460, 14784, 16192, 17710, 19320, 21050, 22880, 24840, 26910
Offset: 8
Examples
G.f. = 2*x^8 + 4*x^9 + 10*x^10 + 16*x^11 + 28*x^12 + 42*x^13 + 64*x^14 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 8..1007
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,3,-3,-1,4,-1,-2,1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)) )); // G. C. Greubel, Feb 25 2019 -
Mathematica
gf[x_,k_]:=x^k/2 (1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])-(1+x)/(1-x^2)^Floor[k/2+1]); CoefficientList[Series[gf[x,5],{x,0,50}],x] (* Herbert Kociemba, Nov 27 2016 *) Drop[CoefficientList[Series[2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)), {x,0,50}], x], 8] (* G. C. Greubel, Feb 25 2019 *)
-
PARI
{a(n) = if( n<0, n=5-n); polcoeff( 2 * x^8 / ((1-x)^2*(1-x^2)^2*(1-x^5)) + x * O(x^n), n)}; /* Michael Somos, Nov 28 2016 */
-
PARI
Vec(2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)) + O(x^40)) \\ Colin Barker, Mar 13 2019
-
Sage
a=(2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5))).series(x, 50).coefficients(x, sparse=False); a[8:] # G. C. Greubel, Feb 25 2019
Formula
G.f.: 2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)).
From Herbert Kociemba, Nov 27 2016: (Start)
More generally gf(k) is the g.f. for the number of bracelets without reflection symmetry with k black beads and n-k white beads.
gf(k): x^k/2 * ((1/k)*Sum_{n|k} phi(n)/(1 - x^n)^(k/n) - (1 + x)/(1-x^2)^floor(k/2 + 1)). (End)
a(n) = a(5-n) for all n in Z. - Michael Somos, Nov 28 2016
0 = a(n) - 2*a(n+1) - a(n+2) + 4*a(n+3) - a(n+4) - 3*a(n+5) + 3*a(n+6) + a(n+7) - 4*a(n+8) + a(n+9) + 2*a(n+10) - a(n+11) for all n in Z. - Michael Somos, Nov 28 2016
Comments