A032282 Number of bracelets (turnover necklaces) of n beads of 2 colors, 11 of them black.
1, 1, 6, 16, 56, 147, 392, 912, 2052, 4262, 8524, 16159, 29624, 52234, 89544, 148976, 242086, 384111, 597506, 911456, 1367184, 2017509, 2934559, 4209504, 5963464, 8347612, 11558232, 15837472, 21493712, 28903332
Offset: 11
Keywords
References
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Andrew Howroyd, Table of n, a(n) for n = 11..1000
- Christian G. Bower, Transforms (2).
- Hansraj Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no.8, 964-999.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Vladimir Shevelev, Spectrum of permanent's values and its extremal magnitudes in Lambda_n^3 and Lambda_n(alpha,beta,gamma), arXiv:1104.4051 [math.CO], 2011. (Cf. Section 5).
- Index entries for sequences related to bracelets
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-15,35,1,-65,45,45,-65,1,36,-20,0,20,-36,-1,65,-45,-45,65,-1,-35,15,5,-5,1).
Crossrefs
Column k=11 of A052307.
Programs
-
Mathematica
k = 11; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *) k=11;CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
Formula
"DIK[ 11 ]" (necklace, indistinct, unlabeled, 11 parts) transform of 1, 1, 1, 1...
From Vladimir Shevelev, Apr 23 2011: (Start)
Put s(n,k,d)=1, if n==k(mod d), and s(n,k,d)=0, otherwise. Then
a(n) = 5*s(n,0,11)/11+(3840*C(n-1,10)+11*(n-2)*(n-4)*(n-6)(n-8)*(n-10))/84480, if n is even;
a(n) = 5*s(n,0,11)/11+(3840*C(n-1,10)+11*(n-1)*(n-3)*(n-5)*(n-7)*(n-9))/84480, if n is odd.
(End)
From Herbert Kociemba, Nov 05 2016: (Start)
G.f.: 1/22*x^11*(1/(1-x)^11 + 11/((-1+x)^6*(1+x)^5) - 10/(-1+x^11)).
G.f.: k=11, x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^floor[(k+2)/2])/2. [edited by Petros Hadjicostas, Jul 18 2018]
(End)
Comments