A032302 G.f.: Product_{k>=1} (1 + 2*x^k).
1, 2, 2, 6, 6, 10, 18, 22, 30, 42, 66, 78, 110, 138, 186, 254, 318, 402, 522, 654, 822, 1074, 1306, 1638, 2022, 2514, 3058, 3798, 4662, 5658, 6882, 8358, 10062, 12186, 14610, 17534, 21150, 25146, 29994, 35694, 42446, 50178, 59514, 70110, 82758, 97602, 114570, 134262
Offset: 0
Keywords
Examples
From _Joerg Arndt_, May 22 2013: (Start) There are a(7) = 22 partitions of 7 into distinct parts of 2 sorts (format P:S for part:sort): 01: [ 1:0 2:0 4:0 ] 02: [ 1:0 2:0 4:1 ] 03: [ 1:0 2:1 4:0 ] 04: [ 1:0 2:1 4:1 ] 05: [ 1:0 6:0 ] 06: [ 1:0 6:1 ] 07: [ 1:1 2:0 4:0 ] 08: [ 1:1 2:0 4:1 ] 09: [ 1:1 2:1 4:0 ] 10: [ 1:1 2:1 4:1 ] 11: [ 1:1 6:0 ] 12: [ 1:1 6:1 ] 13: [ 2:0 5:0 ] 14: [ 2:0 5:1 ] 15: [ 2:1 5:0 ] 16: [ 2:1 5:1 ] 17: [ 3:0 4:0 ] 18: [ 3:0 4:1 ] 19: [ 3:1 4:0 ] 20: [ 3:1 4:1 ] 21: [ 7:0 ] 22: [ 7:1 ] (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Moussa Ahmia and Mohammed L. Nadji, Overpartitions into distinct parts, Comb. Number Theory 14 (2025), no. 1, 65-74, preprint (2021).
- C. G. Bower, Transforms (2)
- Vaclav Kotesovec, Asymptotic formula for A032302
- Eric Weisstein's World of Mathematics, Dilogarithm
- Eric Weisstein's MathWorld, Polylogarithm
- Wikipedia, Polylogarithm
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, 2*b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Aug 24 2015 # Alternatively: simplify(expand(QDifferenceEquations:-QPochhammer(-2,x,99)/3,x)): seq(coeff(%,x,n), n=0..47); # Peter Luschny, Nov 17 2016 -
Mathematica
nn=47; CoefficientList[Series[Product[1+2x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 07 2013 *) nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *) (QPochhammer[-2, x]/3 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
PARI
N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+2*x^n)) \\ Joerg Arndt, May 22 2013
Formula
a(n) = A072706(n)*2 for n>=1.
G.f.: Sum_{n>=0} (2^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k ) ). - Joerg Arndt, Jan 20 2014
a(n) = (1/3) [x^n] QPochhammer(-2,x). - Vladimir Reshetnikov, Nov 20 2015
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) = 1.43674636688368094636290202389358335424... . Equivalently, c = A266576 = Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2. - Vaclav Kotesovec, Jan 04 2016
Comments