cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032302 G.f.: Product_{k>=1} (1 + 2*x^k).

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 18, 22, 30, 42, 66, 78, 110, 138, 186, 254, 318, 402, 522, 654, 822, 1074, 1306, 1638, 2022, 2514, 3058, 3798, 4662, 5658, 6882, 8358, 10062, 12186, 14610, 17534, 21150, 25146, 29994, 35694, 42446, 50178, 59514, 70110, 82758, 97602, 114570, 134262
Offset: 0

Views

Author

Christian G. Bower, Apr 01 1998

Keywords

Comments

"EFK" (unordered, size, unlabeled) transform of 2,2,2,2,...
Number of partitions into distinct parts of 2 sorts, see example. - Joerg Arndt, May 22 2013
In general, for a fixed integer m > 0, if g.f. = Product_{k>=1} (1 + m*x^k) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m+1)*Pi)*n^(3/4)), where c = Pi^2/6 + log(m)^2/2 + polylog(2, -1/m) = -polylog(2, -m). - Vaclav Kotesovec, Jan 04 2016
Antidiagonal sums of A284593. - Peter Bala, Mar 30 2017

Examples

			From _Joerg Arndt_, May 22 2013: (Start)
There are a(7) = 22 partitions of 7 into distinct parts of 2 sorts (format P:S for part:sort):
01:  [ 1:0  2:0  4:0  ]
02:  [ 1:0  2:0  4:1  ]
03:  [ 1:0  2:1  4:0  ]
04:  [ 1:0  2:1  4:1  ]
05:  [ 1:0  6:0  ]
06:  [ 1:0  6:1  ]
07:  [ 1:1  2:0  4:0  ]
08:  [ 1:1  2:0  4:1  ]
09:  [ 1:1  2:1  4:0  ]
10:  [ 1:1  2:1  4:1  ]
11:  [ 1:1  6:0  ]
12:  [ 1:1  6:1  ]
13:  [ 2:0  5:0  ]
14:  [ 2:0  5:1  ]
15:  [ 2:1  5:0  ]
16:  [ 2:1  5:1  ]
17:  [ 3:0  4:0  ]
18:  [ 3:0  4:1  ]
19:  [ 3:1  4:0  ]
20:  [ 3:1  4:1  ]
21:  [ 7:0  ]
22:  [ 7:1  ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 2*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
    # Alternatively:
    simplify(expand(QDifferenceEquations:-QPochhammer(-2,x,99)/3,x)):
    seq(coeff(%,x,n), n=0..47); # Peter Luschny, Nov 17 2016
  • Mathematica
    nn=47; CoefficientList[Series[Product[1+2x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 07 2013 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (QPochhammer[-2, x]/3 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+2*x^n)) \\ Joerg Arndt, May 22 2013

Formula

a(n) = A072706(n)*2 for n>=1.
G.f.: Sum_{n>=0} (2^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k ) ). - Joerg Arndt, Jan 20 2014
a(n) = (1/3) [x^n] QPochhammer(-2,x). - Vladimir Reshetnikov, Nov 20 2015
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) = 1.43674636688368094636290202389358335424... . Equivalently, c = A266576 = Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2. - Vaclav Kotesovec, Jan 04 2016