cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032308 Expansion of Product_{k>=1} (1 + 3*x^k).

Original entry on oeis.org

1, 3, 3, 12, 12, 21, 48, 57, 84, 120, 228, 264, 399, 516, 732, 1119, 1416, 1884, 2532, 3324, 4296, 6168, 7545, 9984, 12684, 16500, 20577, 26688, 34572, 43032, 54264, 68232, 84972, 106176, 131664, 162507, 205680, 249888, 308856, 377796, 465195, 564024, 691788, 835572, 1017768, 1241040
Offset: 0

Views

Author

Keywords

Comments

"EFK" (unordered, size, unlabeled) transform of 3,3,3,3,...
Number of partitions into distinct parts of 3 sorts, see example. [Joerg Arndt, May 22 2013]

Examples

			From _Joerg Arndt_, May 22 2013: (Start)
There are a(5) = 21 partitions of 5 into distinct parts of 3 sorts (format P:S for part:sort):
01:  [ 1:0  4:0  ]
02:  [ 1:0  4:1  ]
03:  [ 1:0  4:2  ]
04:  [ 1:1  4:0  ]
05:  [ 1:1  4:1  ]
06:  [ 1:1  4:2  ]
07:  [ 1:2  4:0  ]
08:  [ 1:2  4:1  ]
09:  [ 1:2  4:2  ]
10:  [ 2:0  3:0  ]
11:  [ 2:0  3:1  ]
12:  [ 2:0  3:2  ]
13:  [ 2:1  3:0  ]
14:  [ 2:1  3:1  ]
15:  [ 2:1  3:2  ]
16:  [ 2:2  3:0  ]
17:  [ 2:2  3:1  ]
18:  [ 2:2  3:2  ]
19:  [ 5:0  ]
20:  [ 5:1  ]
21:  [ 5:2  ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 3*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
    # Alternatively:
    simplify(expand(QDifferenceEquations:-QPochhammer(-3,x,99),x)/4):
    seq(coeff(%,x,n), n=0..45); # Peter Luschny, Nov 17 2016
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + 3*x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*3^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (QPochhammer[-3, x]/4 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+3*x^n)) \\ Joerg Arndt, May 22 2013

Formula

G.f.: Product_{k>=1} (1 + 3*x^k).
a(n) = (1/4) * [x^n] QPochammer(-3, x). - Vladimir Reshetnikov, Nov 20 2015
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(Pi)*n^(3/4)), where c = Pi^2/6 + log(3)^2/2 + polylog(2, -1/3) = 1.93937542076670895307727171917789144122... . - Vaclav Kotesovec, Jan 04 2016
G.f.: Sum_{i>=0} 3^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018

Extensions

a(0) prepended and more terms added by Joerg Arndt, May 22 2013