A032310 Number of ways to partition n labeled elements into sets of odd sizes, with all sizes different.
1, 1, 0, 1, 4, 1, 6, 1, 64, 505, 130, 1321, 1024, 13157, 2380, 395851, 5782144, 1639617, 24545706, 16100905, 306621184, 292018525, 6304002100, 1549052715, 507969498304, 11794047630801, 3164830777316, 75389026652551, 48756350408224, 1240389053007865
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- C. G. Bower, Transforms (2)
Crossrefs
Cf. A003724.
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i)))) end: a:= n-> b(n, iquo(n+1, 2)*2-1): seq(a(n), n=0..40); # Alois P. Heinz, Mar 08 2015
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n - i*j, i-2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[n, Quotient[n+1, 2]*2-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
Formula
"EGJ" (unordered, element, labeled) transform of 1, 0, 1, 0... (odds)
E.g.f.: Product_{k>0} (1+x^(2*k-1)/(2*k-1)!). - Vladeta Jovovic, Jan 16 2004
Extensions
Description corrected by Vladeta Jovovic, Aug 18 2004
a(0)=1 prepended by Alois P. Heinz, Mar 08 2015