cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032310 Number of ways to partition n labeled elements into sets of odd sizes, with all sizes different.

Original entry on oeis.org

1, 1, 0, 1, 4, 1, 6, 1, 64, 505, 130, 1321, 1024, 13157, 2380, 395851, 5782144, 1639617, 24545706, 16100905, 306621184, 292018525, 6304002100, 1549052715, 507969498304, 11794047630801, 3164830777316, 75389026652551, 48756350408224, 1240389053007865
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A003724.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i))))
        end:
    a:= n-> b(n, iquo(n+1, 2)*2-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n - i*j, i-2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[n, Quotient[n+1, 2]*2-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)

Formula

"EGJ" (unordered, element, labeled) transform of 1, 0, 1, 0... (odds)
E.g.f.: Product_{k>0} (1+x^(2*k-1)/(2*k-1)!). - Vladeta Jovovic, Jan 16 2004

Extensions

Description corrected by Vladeta Jovovic, Aug 18 2004
a(0)=1 prepended by Alois P. Heinz, Mar 08 2015