cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A334370 Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k) / prime(k)!).

Original entry on oeis.org

1, 0, 1, 1, 0, 11, 0, 22, 56, 36, 2640, 1, 8712, 79, 72436, 360465, 48608, 49008961, 794376, 4232764, 7753140, 942565890, 18198334, 14799637777, 10577976, 366619314900, 2785137222400, 1475339135400, 1065920156634060, 3765722000041, 5869315258699050
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2020

Keywords

Comments

a(n) is the number of functions f:[n]-> [n] such that the number of elements that are mapped to i is either 0 or the i-th prime. a(5) = 11: (33333), (11222), (12122), (12212), (12221), (21122), (21212), (21221), (22112), (22121), (22211). - Alois P. Heinz, Jul 18 2023

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          (p-> `if`(p>n, 0, b(n-p, i-1)*binomial(n, p)))(ithprime(i))))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 18 2023
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^Prime[k]/Prime[k]!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[DivisorSum[k, -#/(-#!)^(k/#) &, PrimeQ[#] &] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 30}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1+isprime(k)*x^k/k!))) \\ Seiichi Manyama, Feb 27 2022

A115278 Number of partitions of {1,...,2*n} into even sized blocks such that no block size is repeated.

Original entry on oeis.org

1, 1, 1, 16, 29, 256, 14422, 49141, 490429, 10758400, 1797335306, 9458619391, 133756636598, 2528529510391, 137864810180749, 53441183229799381, 410251032050409469, 7615997734377068128, 167055180095977694194, 6741819165851219788075, 738863335901972011745434
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i))))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!* b[n - i*j, i - 2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[2 n, 2 n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: B(x) of b(n) where b(2*n)=a(n), b(2*n+1)=0. B(x)=Product {m >= 1} (1+x^(2*m)/(2*m)!).

A294531 E.g.f.: 1/Product_{k>0} (1-x^(2*k-1)/(2*k-1)!).

Original entry on oeis.org

1, 1, 2, 7, 28, 141, 866, 6063, 48560, 438721, 4387582, 48272643, 579642328, 7535456657, 105499762356, 1582665820557, 25322712724800, 430488412249937, 7748929638924950, 147229720951176075, 2944597048114831688, 61836721841638907121, 1360407969674984670156
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 40:
    S:= series(1/mul(1-x^j/j!,j=1..N,2),x,N+1):
    seq(coeff(S,x,n)*n!,n=0..N); # Robert Israel, Nov 23 2017
  • Mathematica
    nmax = 30; CoefficientList[Series[1/Product[(1-x^(2*k-1)/(2*k-1)!), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 02 2017 *)

A371550 Expansion of e.g.f. Product_{k>=1} (1 + mu(k)^2*x^k/k!).

Original entry on oeis.org

1, 1, 1, 4, 4, 11, 67, 29, 260, 876, 3841, 34134, 69774, 152231, 774243, 4182754, 30376720, 409813561, 1056300594, 3175397668, 3655126844, 91668397027, 499871922705, 5219638765816, 120716816247428, 17518596045460, 193032439198301, 3860666483055372, 22675538336311998
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[(1 + MoebiusMu[k]^2 x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A334385 E.g.f.: Product_{k>=1} (1 + x^(k*(k + 1)/2) / (k*(k + 1)/2)!).

Original entry on oeis.org

1, 1, 0, 1, 4, 0, 1, 7, 0, 84, 841, 11, 0, 286, 4004, 1, 8024, 136136, 816, 7775256, 155195040, 54265, 1193830, 0, 109832360, 2749077760, 84987760, 296010, 10716746041, 310545275069, 1201800600, 2444026056820, 77016647623040, 0, 14402113079955304, 504073957798435640
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2020

Keywords

Crossrefs

Cf. A007837, A032310, A053614 (positions of 0's), A115278, A205799.

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[(1 + x^(k (k + 1)/2)/(k (k + 1)/2)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[DivisorSum[k, -#/(-#!)^(k/#) &, IntegerQ[Sqrt[8 # + 1]] &] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 35}]
Showing 1-5 of 5 results.