A032350 Palindromic nonprime numbers.
1, 4, 6, 8, 9, 22, 33, 44, 55, 66, 77, 88, 99, 111, 121, 141, 161, 171, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 323, 333, 343, 363, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616
Offset: 1
Links
- Georg Fischer, Table of n, a(n) for n = 1..10217
- W. D. Banks, D. N. Hart, and M. Sakata, Almost all palindromes are composite, Math. Res. Lett., 11 No. 5-6 (2004), 853-868.
- Patrick De Geest, World!Of Numbers
- Patrick De Geest, World!Of Palindromic Primes
Programs
-
GAP
Filtered([1..620],n-> not IsPrime(n) and ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
-
Mathematica
palq[n_] := IntegerDigits[n]==Reverse[IntegerDigits[n]]; Select[Range[700], palq[ # ]&&!PrimeQ[ # ]&] (* Second program: *) Select[Range@ 616, And[PalindromeQ@ #, ! PrimeQ@ #] &] (* Michael De Vlieger, Jan 02 2018 *)
-
Sage
[n for n in (1..616) if not is_prime(n) and Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
Extensions
Edited by Dean Hickerson, Oct 22 2002
Comments