cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032350 Palindromic nonprime numbers.

Original entry on oeis.org

1, 4, 6, 8, 9, 22, 33, 44, 55, 66, 77, 88, 99, 111, 121, 141, 161, 171, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 323, 333, 343, 363, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616
Offset: 1

Views

Author

Keywords

Comments

Complement of A002385 (palindromic primes) with respect to A002113 (palindromic numbers). - Jaroslav Krizek, Mar 12 2013
Banks, Hart, and Sakata derive a nontrivial upper bound for the number of prime palindromes n <= x as x tends to infinity. It follows that almost all palindromes are composite. The results hold in any base. The authors use Weil's bound for Kloosterman sums. - Jonathan Sondow, Jan 02 2018

Crossrefs

Programs

  • GAP
    Filtered([1..620],n-> not IsPrime(n) and ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
  • Mathematica
    palq[n_] := IntegerDigits[n]==Reverse[IntegerDigits[n]]; Select[Range[700], palq[ # ]&&!PrimeQ[ # ]&]
    (* Second program: *)
    Select[Range@ 616, And[PalindromeQ@ #, ! PrimeQ@ #] &] (* Michael De Vlieger, Jan 02 2018 *)
  • Sage
    [n for n in (1..616) if not is_prime(n) and Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
    

Extensions

Edited by Dean Hickerson, Oct 22 2002