A032351 Number of permutations of length n which avoid the patterns 2143, 1324 (smooth permutations); or avoid the patterns 1342, 2431; etc.
1, 1, 2, 6, 22, 88, 366, 1552, 6652, 28696, 124310, 540040, 2350820, 10248248, 44725516, 195354368, 853829272, 3733693872, 16333556838, 71476391800, 312865382004, 1369760107576, 5998008630244, 26268304208032, 115055864102504, 503997820344464, 2207927106851580, 9673223726469136, 42382192892577128, 185702341264971696
Offset: 0
Examples
1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 88*x^5 + 366*x^6 + 1552*x^7 + ...
References
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.47.
- R. P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.
Links
- H. Abe and S. Billey, Consequences of the Lakshmibai-Sandhya theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry, 2014.
- George Balla, Ghislain Fourier, and Kunda Kambaso, PBW filtration and monomial bases for Demazure modules in types A and C, arXiv:2205.01747 [math.RT], 2022.
- C. Bean, M. Tannock and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015. See Eq. (2).
- Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
- Miklos Bona, The permutation classes equinumerous to the smooth class, Electron. J. Combin., 5 (1998), no. 1, Research Paper 31, 12 pp.
- M. Bousquet-Mélou and S. Butler, Forest-like permutations, arXiv:math/0603617 [math.CO], 2006.
- Rocco Chirivì, Xin Fang, and Ghislain Fourier, Degenerate Schubert varieties in type A, Transformation Groups (2020).
- Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013-2014.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
- A. Woo and A. Yong, When is a Schubert variety Gorenstein?, arXiv:math/0409490 [math.AG], 2004.
- A. Woo and A. Yong, When is a Schubert variety Gorenstein?, Advances in Mathematics, Volume 207, Issue 1, 1 December 2006, Pages 205-220.
Crossrefs
Cf. A053617.
Programs
-
Maple
t1:=(1-5*x+3*x^2+x^2*sqrt(1-4*x))/(1-6*x+8*x^2-4*x^3); series(t1,x,40); seriestolist(%); # N. J. A. Sloane, Nov 09 2016
-
Mathematica
Table[(Sum[(m+3)*(Sum[Sum[2^j*Binomial[j+k, k]*Binomial[m-j, 2*k+1], {j, 0, m-2*k-1}], {k, 0, m/2}]) * Binomial[2*n-m-2, n], {m, 0, n-2}] + Binomial[2*n, n])/(n+1),{n,0,20}] (* Vaclav Kotesovec, Sep 19 2014, after Vladimir Kruchinin *)
-
Maxima
a(n):=(sum((m+3)*(sum(sum(2^(j)*binomial(j+k,k)*binomial(m-j,2*k+1),j,0,m-2*k-1),k,0,m/2))*binomial(2*n-m-2,n),m,0,n-2)+binomial(2*n,n))/(n+1); /* Vladimir Kruchinin, Sep 19 2014 */
-
PARI
x='x+O('x^44) /* that many terms */ gf=(1-5*x+3*x^2+x^2*sqrt(1-4*x))/(1-6*x+8*x^2-4*x^3); Vec(gf) /* show terms */ /* Joerg Arndt, Apr 20 2011 */
Formula
G.f.: (1-5*x+3*x^2+x^2*sqrt(1-4*x))/(1-6*x+8*x^2-4*x^3).
G.f.: 1 / (1 - x / (1 - x / (1 - 2*x / (1 - x / (1 - x / (1 - x / (1 - x / ...))))))). - Michael Somos, Apr 18 2012
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) = upper left term in n-th power of the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 3, 1, 1, 0, 0, ...
1, 4, 1, 1, 1, 0, ...
1, 5, 1, 1, 1, 1, ...
...
(End)
HANKEL transform is A011782. HANKEL transform of a(n+1) is A011782(n+1). INVERT transform of A026671 with 1 prepended. - Michael Somos, Apr 18 2012
Recurrence: (n-2)*a(n) = 2*(5*n-13)*a(n-1) - 4*(8*n-25)*a(n-2) + 12*(3*n-10)*a(n-3) - 8*(2*n-7)*a(n-4). - Vaclav Kotesovec, Aug 24 2014
a(n) ~ 1/11 * (1 - 5*r + 3*r^2 + r^2*sqrt(1-4*r)) *(25 - 44*r + 24*r^2) / r^n, where r = 1/6*(4 - 2/(-17 + 3*sqrt(33))^(1/3) + (-17 + 3*sqrt(33))^(1/3)) = 0.228155493653961819214572... is the root of the equation -1 + 6*r - 8*r^2 + 4*r^3 = 0. - Vaclav Kotesovec, Aug 24 2014
a(n) = (Sum_{m=0..n-2} (m+3)*(Sum_{k=0..m/2} Sum_{j=0..m-2*k-1} 2^j * binomial(j+k, k) * binomial(m-j, 2*k+1)) * binomial(2*n-m-2,n) + binomial(2*n,n))/(n+1). - Vladimir Kruchinin, Sep 19 2014
Extensions
More terms from Erich Friedman