cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032351 Number of permutations of length n which avoid the patterns 2143, 1324 (smooth permutations); or avoid the patterns 1342, 2431; etc.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 366, 1552, 6652, 28696, 124310, 540040, 2350820, 10248248, 44725516, 195354368, 853829272, 3733693872, 16333556838, 71476391800, 312865382004, 1369760107576, 5998008630244, 26268304208032, 115055864102504, 503997820344464, 2207927106851580, 9673223726469136, 42382192892577128, 185702341264971696
Offset: 0

Views

Author

Keywords

Examples

			1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 88*x^5 + 366*x^6 + 1552*x^7 + ...
		

References

  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.47.
  • R. P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.

Crossrefs

Cf. A053617.

Programs

  • Maple
    t1:=(1-5*x+3*x^2+x^2*sqrt(1-4*x))/(1-6*x+8*x^2-4*x^3);
    series(t1,x,40);
    seriestolist(%); # N. J. A. Sloane, Nov 09 2016
  • Mathematica
    Table[(Sum[(m+3)*(Sum[Sum[2^j*Binomial[j+k, k]*Binomial[m-j, 2*k+1], {j, 0, m-2*k-1}], {k, 0, m/2}]) * Binomial[2*n-m-2, n], {m, 0, n-2}] + Binomial[2*n, n])/(n+1),{n,0,20}] (* Vaclav Kotesovec, Sep 19 2014, after Vladimir Kruchinin *)
  • Maxima
    a(n):=(sum((m+3)*(sum(sum(2^(j)*binomial(j+k,k)*binomial(m-j,2*k+1),j,0,m-2*k-1),k,0,m/2))*binomial(2*n-m-2,n),m,0,n-2)+binomial(2*n,n))/(n+1); /* Vladimir Kruchinin, Sep 19 2014 */
  • PARI
    x='x+O('x^44) /* that many terms */
    gf=(1-5*x+3*x^2+x^2*sqrt(1-4*x))/(1-6*x+8*x^2-4*x^3);
    Vec(gf) /* show terms */ /* Joerg Arndt, Apr 20 2011 */
    

Formula

G.f.: (1-5*x+3*x^2+x^2*sqrt(1-4*x))/(1-6*x+8*x^2-4*x^3).
G.f.: 1 / (1 - x / (1 - x / (1 - 2*x / (1 - x / (1 - x / (1 - x / (1 - x / ...))))))). - Michael Somos, Apr 18 2012
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) = upper left term in n-th power of the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 3, 1, 1, 0, 0, ...
1, 4, 1, 1, 1, 0, ...
1, 5, 1, 1, 1, 1, ...
...
(End)
HANKEL transform is A011782. HANKEL transform of a(n+1) is A011782(n+1). INVERT transform of A026671 with 1 prepended. - Michael Somos, Apr 18 2012
Recurrence: (n-2)*a(n) = 2*(5*n-13)*a(n-1) - 4*(8*n-25)*a(n-2) + 12*(3*n-10)*a(n-3) - 8*(2*n-7)*a(n-4). - Vaclav Kotesovec, Aug 24 2014
a(n) ~ 1/11 * (1 - 5*r + 3*r^2 + r^2*sqrt(1-4*r)) *(25 - 44*r + 24*r^2) / r^n, where r = 1/6*(4 - 2/(-17 + 3*sqrt(33))^(1/3) + (-17 + 3*sqrt(33))^(1/3)) = 0.228155493653961819214572... is the root of the equation -1 + 6*r - 8*r^2 + 4*r^3 = 0. - Vaclav Kotesovec, Aug 24 2014
a(n) = (Sum_{m=0..n-2} (m+3)*(Sum_{k=0..m/2} Sum_{j=0..m-2*k-1} 2^j * binomial(j+k, k) * binomial(m-j, 2*k+1)) * binomial(2*n-m-2,n) + binomial(2*n,n))/(n+1). - Vladimir Kruchinin, Sep 19 2014

Extensions

More terms from Erich Friedman