A032352 Numbers k such that there is no prime between 10*k and 10*k+9.
20, 32, 51, 53, 62, 84, 89, 107, 113, 114, 126, 133, 134, 135, 141, 146, 150, 164, 167, 168, 171, 176, 179, 185, 189, 192, 196, 204, 207, 210, 218, 219, 232, 236, 240, 248, 249, 251, 256, 258, 282, 294, 298, 305, 309, 314, 315, 317, 323, 324, 326, 328, 342
Offset: 1
Examples
m=32: 321=3*107, 323=17*19, 325=5*5*13, 327=3*109, 329=7*47, therefore 32 is a term.
Links
- M. I. Wilczynski, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a032352 n = a032352_list !! (n-1) a032352_list = filter (\x -> all (== 0) $ map (a010051 . (10*x +)) [1..9]) [1..] -- Reinhard Zumkeller, Oct 22 2011
-
Magma
[n: n in [1..350] | IsZero(#PrimesInInterval(10*n, 10*n+9))]; // Bruno Berselli, Sep 04 2012
-
Maple
a:=proc(n) if map(isprime,{seq(10*n+j,j=1..9)})={false} then n else fi end: seq(a(n),n=1..350); # Emeric Deutsch, Aug 01 2005
-
Mathematica
f[n_] := PrimePi[10n + 10] - PrimePi[10n]; Select[ Range[342], f[ # ] == 0 &] (* Robert G. Wilson v, Sep 24 2004 *) Select[Range[342], NextPrime[10 # ] > 10 # + 9 &] (* Maciej Ireneusz Wilczynski, Jul 18 2010 *) Flatten@Position[10*#+{1,3,7,9}&/@Range@4000,{?CompositeQ ..}] (* _Hans Rudolf Widmer, Jul 06 2024 *)
-
PARI
is(n)=!isprime(10*n+1) && !isprime(10*n+3) && !isprime(10*n+7) && !isprime(10*n+9) \\ Charles R Greathouse IV, Mar 29 2013
-
Python
from sympy import isprime def aupto(limit): alst = [] for d in range(2, limit+1): td = [10*d + j for j in [1, 3, 7, 9]] if not any(isprime(t) for t in td): alst.append(d) return alst print(aupto(342)) # Michael S. Branicky, May 30 2021
Formula
a(n) ~ n. - Charles R Greathouse IV, Mar 29 2013
Extensions
More terms from Miklos Kristof, Aug 27 2002
Comments