A032446 Number of solutions to phi(k) = 2n.
3, 4, 4, 5, 2, 6, 0, 6, 4, 5, 2, 10, 0, 2, 2, 7, 0, 8, 0, 9, 4, 3, 2, 11, 0, 2, 2, 3, 2, 9, 0, 8, 2, 0, 2, 17, 0, 0, 2, 10, 2, 6, 0, 6, 0, 3, 0, 17, 0, 4, 2, 3, 2, 9, 2, 6, 0, 3, 0, 17, 0, 0, 2, 9, 2, 7, 0, 2, 2, 3, 0, 21, 0, 2, 2, 0, 0, 7, 0, 12, 4, 3, 2, 12, 0, 2, 0, 8, 2, 10
Offset: 1
Examples
If n = 8 then phi(x) = 2*8 = 16 is satisfied for only a(8) = 6 values of x, viz. 17, 32, 34, 40, 48, 60.
References
- Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover Publications, Inc., NY, 1966, page 90.
Links
- T. D. Noe, Table of n, a(n) for n = 1..5000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Matteo Caorsi and Sergio Cecotti, Geometric classification of 4d N=2 SCFTs, arXiv:1801.04542 [hep-th], 2018.
- Carl Pomerance, Popular values of Euler's function, Mathematica 27 (1980), 84-89.
Crossrefs
Programs
-
Magma
[#EulerPhiInverse( 2*n):n in [1..100]]; // Marius A. Burtea, Sep 08 2019
-
Maple
with(numtheory); [ seq(nops(invphi(2*n)), n=1..90) ];
-
Mathematica
t = Table[0, {100} ]; Do[a = EulerPhi[n]; If[a < 202, t[[a/2]]++ ], {n, 3, 10^5} ]; t
-
PARI
a(n) = invphiNum(2*n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
Extensions
Extended by Robin Trew (trew(AT)hcs.harvard.edu).
Comments