A032526 a(n) = floor(5*n^2/2).
0, 2, 10, 22, 40, 62, 90, 122, 160, 202, 250, 302, 360, 422, 490, 562, 640, 722, 810, 902, 1000, 1102, 1210, 1322, 1440, 1562, 1690, 1822, 1960, 2102, 2250, 2402, 2560, 2722, 2890, 3062, 3240, 3422, 3610, 3802, 4000, 4202, 4410, 4622, 4840, 5062
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A032527.
Programs
-
Magma
[Floor(5*n^2/2): n in [0..50]]; // Bruno Berselli, Jun 14 2013
-
Maple
A032526:=n->floor(5*n^2/2): seq(A032526(n), n=0..100); # Wesley Ivan Hurt, Feb 03 2017
-
Mathematica
Table[Floor[5 n^2/2], {n, 0, 50}] (* Bruno Berselli, Jun 14 2013 *) LinearRecurrence[{2,0,-2,1},{0,2,10,22},50] (* Harvey P. Dale, Dec 14 2016 *)
Formula
a(n) = 2n^2 + floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
From Bruno Berselli, Jun 14 2013: (Start)
G.f.: 2*x*(1+3*x+x^2)/((1+x)*(1-x)^3).
a(n) = 2*A032527(n). (End)
Sum_{n>=1} 1/a(n) = Pi^2/60 + tan(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)). - Amiram Eldar, Aug 15 2025