A032540 Numbers that, when expressed in base 4 and then interpreted in base 10, yield a multiple of the original number.
0, 1, 2, 3, 6, 24, 120, 171, 177, 273, 362, 440, 546, 819, 1418, 1560, 1582, 1638, 1760, 1806, 2400, 2841, 2927, 3640, 4706, 4882, 5720, 6328, 6552, 7040, 7224, 9431, 9600, 10101, 14560, 20202, 22880, 24800, 25080, 25312, 28896, 32760, 36974, 38400
Offset: 1
Examples
24 in base 4 is 120, which interpreted in base 10 is 120 = 5*24.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..153 (terms < 5*10^12, first 100 terms from Robert Israel)
Programs
-
Maple
filter:= proc(n) local L,t; L:= convert(n,base,4); t:= add(L[i]*10^(i-1),i=1..nops(L)); t mod n = 0 end proc: filter(0):=true: select(filter, [$0..10^5]); # Robert Israel, Sep 13 2018
-
Mathematica
Join[{0}, Select[Range[40000], Divisible[FromDigits[IntegerDigits[#,4]], #]&]] (* Harvey P. Dale, Apr 20 2011 *)
Extensions
More terms from Erich Friedman and Naohiro Nomoto, Aug 06 2001
Offset changed by Robert Israel, Sep 13 2018
Name edited by Jon E. Schoenfield, Oct 25 2019
Comments