A032595 First of three consecutive palindromes all of which are prime.
1878781, 1879781, 1968691, 3589853, 7819187, 108484801, 159181951, 160696061, 175090571, 187090781, 316686613, 319393913, 725585527, 728888827, 731898137, 904080409, 921191129, 930494039, 987191789, 987484789, 10456865401, 10744944701
Offset: 1
Examples
2,3,5 are palindromes, and consecutive primes, but they are not consecutive palindromes. 2,3,4 are consecutive palindromes, but they are not all primes. The first time there are three consecutive palindromes which are all primes is 1878781, 1879781, 1880881. - _N. J. A. Sloane_, Aug 12 2021
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- P. De Geest, World!Of Palindromic Primes
Programs
-
PARI
nxt(n)=my(d=digits(n)); i=(#d+1)\2; while(i&&d[i]==9, d[i]=0; d[#d+1-i]=0; i--); if(i, d[i]++; d[#d+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1); sum(i=1, #d, 10^(#d-i)*d[i]) \\ From David A. Corneth at A002113 list(lim)=my(v=List(),p=1,q=2,r=3); while(p<=lim\=1, if(isprime(r), if(isprime(q), if(isprime(p), listput(v,p)); p=q; q=r; r=nxt(r), q=nxt(p=r); r=nxt(q)), q=nxt(p=nxt(r)); r=nxt(q))); Vec(v) \\ Charles R Greathouse IV, Aug 11 2021
Extensions
New name from Charles R Greathouse IV, Aug 11 2021