cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A032596 Second of three consecutive palindromes all of which are prime.

Original entry on oeis.org

1879781, 1880881, 1969691, 3590953, 7820287, 108494801, 159191951, 160707061, 175101571, 187101781, 316696613, 319404913, 725595527, 728898827, 731909137, 904090409, 921202129, 930505039, 987202789, 987494789, 10456965401, 10745054701
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • PARI
    nxt(n)=my(d=digits(n)); i=(#d+1)\2; while(i&&d[i]==9, d[i]=0; d[#d+1-i]=0; i--); if(i, d[i]++; d[#d+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1); sum(i=1, #d, 10^(#d-i)*d[i]) \\ From David A. Corneth at A002113
    list(lim)=my(v=List(),p=1,q=2,r=3); while(q<=lim\=1, if(isprime(r), if(isprime(q), if(isprime(p), listput(v,q)); p=q; q=r; r=nxt(r), q=nxt(p=r); r=nxt(q)), q=nxt(p=nxt(r)); r=nxt(q))); Vec(v) \\ Charles R Greathouse IV, Aug 11 2021

Extensions

New name from Charles R Greathouse IV, Aug 11 2021

A032597 Third of three consecutive palindromes all of which are prime.

Original entry on oeis.org

1880881, 1881881, 1970791, 3591953, 7821287, 108505801, 159202951, 160717061, 175111571, 187111781, 316707613, 319414913, 725606527, 728909827, 731919137, 904101409, 921212129, 930515039, 987212789, 987505789, 10457075401, 10745154701
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • PARI
    nxt(n)=my(d=digits(n)); i=(#d+1)\2; while(i&&d[i]==9, d[i]=0; d[#d+1-i]=0; i--); if(i, d[i]++; d[#d+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1); sum(i=1, #d, 10^(#d-i)*d[i]) \\ From David A. Corneth at A002113
    list(lim)=my(v=List(),p=1,q=2,r=3); while(r<=lim\=1, if(isprime(r), if(isprime(q), if(isprime(p), listput(v,r)); p=q; q=r; r=nxt(r), q=nxt(p=r); r=nxt(q)), q=nxt(p=nxt(r)); r=nxt(q))); Vec(v) \\ Charles R Greathouse IV, Aug 11 2021

Extensions

New name from Charles R Greathouse IV, Aug 11 2021

A230806 The smallest of 4 consecutive palindromic numbers that are all primes.

Original entry on oeis.org

1878781, 11782828711, 13828882831, 33694849633, 36331813363, 76093839067, 93121812139, 1018278728101, 1101228221011, 1200528250021, 1237788877321, 1296978796921, 1318608068131, 1449108019441, 1477968697741, 1608678768061, 1713708073171, 1792308032971
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 30 2013

Keywords

Comments

There cannot be 5 consecutive palindromic numbers that are all primes. The central digit of all numbers in the sequence will be 8.

Examples

			1878781 is in the sequence because 1878781, 1879781, 1880881 and 1881881 are consecutive palindromic numbers that are all primes.
		

Crossrefs

Programs

  • Mathematica
    a = {}; m = 0; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], m = m + 1; If[m == 1, z1 = z]; If[m == 4, AppendTo[a, z1]], m = 0], {n, 1, 1000000000}]

A230807 The smallest of n consecutive palindromic numbers which are all primes.

Original entry on oeis.org

2, 2, 1878781, 1878781
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 30 2013

Keywords

Comments

There cannot be 5 consecutive palindromic numbers which are all primes.

Examples

			1878781 is in the sequence because 1878781, 1879781, 1880881 and 1881881 are consecutive palindromic numbers which are all primes.
		

Crossrefs

Showing 1-4 of 4 results.