cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032737 Composite numbers k such that all the decimal concatenations ik and ikj (i, j = 1...9) are also composite.

Original entry on oeis.org

5620, 7358, 13308, 13332, 13650, 14612, 26302, 27971, 28472, 28838, 29542, 29650, 31328, 33027, 33170, 35914, 35970, 36186, 39608, 40078, 41165, 41528, 42422, 47172, 47382, 48046, 48052, 48454, 50774, 52735, 55553, 60222, 60806
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

The old definition was that a(n) must be composite and "cannot be prefixed or followed by any digit to form a prime ('empty' suffixes are allowed)".

Examples

			55553 prefixed with a digit from (1,2,3,4,5,6,7,8,9) and followed by a digit from ('',1,3,7,9) never yields a prime: '3'55553'_' = 11 x 32323; '2'5620'9' = 3 x 41 x 2083.
		

Crossrefs

Programs

  • Maple
    # Naive program to test for membership -  N. J. A. Sloane, Jan 01 2025:
    isA032737 := proc(x) local S,y,L1,L2,i,j;
    L1:=[seq(i,i=1..9)]; L2:=[1,3,7,9];
    S:=[x];
    for i in L1 do y:=parse(cat(i,x)); S:=[op(S),y]; od:
    for i in L1 do for j in L2 do y:=parse(cat(i,x,j)); S:=[op(S),y]; od: od:
    for i in S do if isprime(i) then return('false', i,"is prime"); break; fi; od:
    'true';
    end;
  • Mathematica
    pfdQ[n_]:=CompositeQ[n]&&NoneTrue[Flatten[Table[10(d1*10^IntegerLength[n]+n)+d2,{d1,Range[9]},{d2,{1,3,7,9}}]],PrimeQ] && NoneTrue[ Flatten[Table[d1*10^IntegerLength[n]+n,{d1,Range[9]}]],PrimeQ]; Select[Range[61000],pfdQ] (* Harvey P. Dale, Jan 01 2025 *)

Extensions

Offset changed by Andrew Howroyd, Aug 13 2024
Definition revised by N. J. A. Sloane, Jan 01 2025
Terms corrected and extended by Harvey P. Dale, Jan 01 2025