A032737 Composite numbers k such that all the decimal concatenations ik and ikj (i, j = 1...9) are also composite.
5620, 7358, 13308, 13332, 13650, 14612, 26302, 27971, 28472, 28838, 29542, 29650, 31328, 33027, 33170, 35914, 35970, 36186, 39608, 40078, 41165, 41528, 42422, 47172, 47382, 48046, 48052, 48454, 50774, 52735, 55553, 60222, 60806
Offset: 1
Examples
55553 prefixed with a digit from (1,2,3,4,5,6,7,8,9) and followed by a digit from ('',1,3,7,9) never yields a prime: '3'55553'_' = 11 x 32323; '2'5620'9' = 3 x 41 x 2083.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
# Naive program to test for membership - N. J. A. Sloane, Jan 01 2025: isA032737 := proc(x) local S,y,L1,L2,i,j; L1:=[seq(i,i=1..9)]; L2:=[1,3,7,9]; S:=[x]; for i in L1 do y:=parse(cat(i,x)); S:=[op(S),y]; od: for i in L1 do for j in L2 do y:=parse(cat(i,x,j)); S:=[op(S),y]; od: od: for i in S do if isprime(i) then return('false', i,"is prime"); break; fi; od: 'true'; end;
-
Mathematica
pfdQ[n_]:=CompositeQ[n]&&NoneTrue[Flatten[Table[10(d1*10^IntegerLength[n]+n)+d2,{d1,Range[9]},{d2,{1,3,7,9}}]],PrimeQ] && NoneTrue[ Flatten[Table[d1*10^IntegerLength[n]+n,{d1,Range[9]}]],PrimeQ]; Select[Range[61000],pfdQ] (* Harvey P. Dale, Jan 01 2025 *)
Extensions
Offset changed by Andrew Howroyd, Aug 13 2024
Definition revised by N. J. A. Sloane, Jan 01 2025
Terms corrected and extended by Harvey P. Dale, Jan 01 2025
Comments