cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032790 Palindromic quotients (k*(k+1)*(k+2)) / (k+(k+1)+(k+2)).

Original entry on oeis.org

0, 1, 5, 8, 33, 161, 616, 3333, 8008, 18881, 54945, 333333, 33333333, 120232021, 124060421, 161656161, 185464581, 541202145, 677191776, 3333333333, 6316116136, 333333333333, 544721127445, 616947749616, 3333169613333, 3333802083333, 5412843482145, 6352230322536
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

For all i >= 1, 3^{2*i} is a term arising from k = 9^i, where ^ is repeated concatenation. - Michael S. Branicky, Jan 24 2022

Crossrefs

Cf. A032789.

Programs

  • Mathematica
    Select[Table[Times@@Range[n,n+2]/(3n+3),{n,0,317*10^4}],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 06 2019 *)
  • Python
    from itertools import count, islice
    def ispal(n): s = str(n); return s == s[::-1]
    def agen():
        for k in count(0):
            q, r = divmod(k*(k+2), 3)
            if r == 0 and ispal(q):
                yield k, q
    print([q for k, q in islice(agen(), 31)]) # Michael S. Branicky, Jan 24 2022

Extensions

a(26) and beyond from Michael S. Branicky, Jan 24 2022