cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032795 Positive numbers k such that (k+1)*(k+2)*(k+3)*(k+4)/(k+(k+1)+(k+2)+(k+3)+(k+4)) is an integer.

Original entry on oeis.org

8, 18, 56, 126, 176, 312, 504, 624, 918, 1292, 1512, 2024, 2640, 2990, 3780, 4698, 5208, 6336, 7616, 8316, 9842, 11544, 12464, 14448, 16632, 17802, 20304, 23030, 24480, 27560, 30888, 32648, 36366, 40356, 42456, 46872, 51584, 54054, 59228
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) )); // G. C. Greubel, May 29 2019
    
  • Mathematica
    CoefficientList[Series[2*x*(4+5x+19x^2+23x^3+10x^4+11x^5+3x^6)/((1-x)^4*(1+x+x^2)^3), {x, 0, 39}], x] (* Georg Fischer, May 27 2019 *)
  • PARI
    Vec(2*x*(4+5*x+19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)^4*(1+x+x^2)^3) + O(x^20)) \\ Felix Fröhlich, May 27 2019
    
  • Sage
    a=(2*x*(4+ 5*x +19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)*(1-x^3)^3) ).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 29 2019

Formula

a(n) = A032794(n)/A032793(n).
O.g.f.: 2*x*(4+5*x+19*x^2+23*x^3+10*x^4+11*x^5+3*x^6)/((1-x)^4* (1+x+x^2)^3). [Corrected by Georg Fischer, May 27 2019]

Extensions

Definition amended and offset changed by Georg Fischer, May 27 2019