A032797 Numbers n such that n(n+1)(n+2)...(n+10) /(n+(n+1)+(n+2)+...+(n+10)) is a multiple of n.
1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Programs
-
Mathematica
nmnQ[n_]:=With[{c=n+Range[0,10]},Divisible[Times@@c/Total[c],n]]; Select[ Range[ 100],nmnQ] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,1,-1},{1,2,3,4,5,7,8,9,10,12},80] (* Harvey P. Dale, May 07 2017 *)
-
PARI
is(n)=factorback(vector(10,i,n+i))%(11*n+55)==0 \\ Charles R Greathouse IV, Aug 07 2016
Formula
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = a(n-1) + a(n-9) - a(n-10) for n > 10.
G.f.: x*(x^9 + x^8 + x^7 + x^6 + 2*x^5 + x^4 + x^3 + x^2 + x + 1)/(x^10 - x^9 - x + 1). (End)
Extensions
Typo in definition corrected by Zak Seidov, Aug 06 2016
Comments