cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032799 Numbers k such that k equals the sum of its digits raised to the consecutive powers (1,2,3,...).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 89, 135, 175, 518, 598, 1306, 1676, 2427, 2646798, 12157692622039623539
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Lemma: The sequence is finite with all terms in the sequence having at most 22 digits. Proof: Let n be an m-digit natural number in the sequence for some m. Then 10^(m-1)<=n and n<=9+9^2+...9^m = 9(9^m-1)/8<(9^(m+1))/8. Thus 10^(m-1)<(9^(m+1))/8. Taking logarithms of both sides and solving yields m<22.97 QED. Note proof is identical to that for A208130. [Francis J. McDonnell, Apr 14 2012]
Sometimes referred to as disarium numbers. - Dumitru Damian, Jul 22 2024

Examples

			89 = 8^1 + 9^2.
175 = 1^1 + 7^2 + 5^3.
2427 = 2^1 + 4^2 + 2^3 + 7^4.
2646798 = 2^1 + 6^2 + 4^3 + 6^4 + 7^5 + 9^6 + 8^7.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 175, p. 55, Ellipses, Paris 2008.
  • Ken Follett, Code to Zero, Dutton, a Penguin Group, NY 2000, p. 84.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 37.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, London, 1986, Entry 175.

Crossrefs

Programs

  • Maple
    N:= 10: # to get solutions of up to N digits
    Branch:= proc(level,sofar)
      option remember;
      local Res, x, x0, lb, ub, y;
      Res:= NULL;
      if perm[level] = 1 then x0:= 1 else x0:= 0 fi;
      for x from x0 to 9 do
        lb:= sofar + b[x,perm[level]] + scmin[level];
        ub:= sofar + b[x,perm[level]] + scmax[level];
        if lb <= 0 and ub >= 0 then
           if level = n then Res:= Res, [x]
           else
             for y in Branch(level+1,sofar+b[x,perm[level]]) do
                Res:= Res, [x, op(y)]
             od
            fi
         fi
       od;
       [Res]
    end:
    count:= 0:
    for n from 1 to N do
      printf("Looking for %d digit solutions\n",n);
      forget(Branch);
      for j from 1 to n do
        for x from 0 to 9 do
          b[x,j]:= x^j - x*10^(n-j)
        od
      od:
      for j from 1 to n do
        smin[j]:= min(seq(b[x,j],x=0..9));
        smax[j]:= max(seq(b[x,j],x=0..9));
      od:
      perm:= sort([seq(smax[j]-smin[j],j=1..n)],`>`,output=permutation):
      for j from 1 to n do
        scmin[j]:= add(smin[perm[i]],i=j+1..n);
        scmax[j]:= add(smax[perm[i]],i=j+1..n);
      end;
      for X in Branch(1,0) do
        xx:= add(X[i]*10^(n-perm[i]),i=1..n);
        count:= count+1;
        A[count]:= xx;
        print(xx);
      od
    od:
    seq(A[i],i=1..count); # Robert Israel, Aug 07 2014
  • Mathematica
    f[n_] := Plus @@ (IntegerDigits[n]^Range[ Floor[ Log[10, n] + 1]]); Select[ Range[10^7], f[ # ] == # &] (* Robert G. Wilson v, May 04 2005 *)
    Join[{0},Select[Range[10^7],Total[IntegerDigits[#]^Range[ IntegerLength[ #]]] == #&]] (* Harvey P. Dale, Oct 13 2015 *)
    sdcpQ[n_]:=n==Inner[Power,IntegerDigits[n],Range[IntegerLength[n]],Plus]; Join[{0},Select[Range[27*10^5],sdcpQ]] (* Harvey P. Dale, May 30 2020 *)
  • PARI
    for(n=1,10^22,d=digits(n);s=sum(i=1,#d,d[i]^i);if(s==n,print1(n,", "))) \\ Derek Orr, Aug 07 2014

Extensions

Corrected by Macsy Zhang (macsy(AT)21cn.com), Feb 17 2002