A032924 Numbers whose ternary expansion contains no 0.
1, 2, 4, 5, 7, 8, 13, 14, 16, 17, 22, 23, 25, 26, 40, 41, 43, 44, 49, 50, 52, 53, 67, 68, 70, 71, 76, 77, 79, 80, 121, 122, 124, 125, 130, 131, 133, 134, 148, 149, 151, 152, 157, 158, 160, 161, 202, 203, 205, 206, 211, 212, 214, 215, 229, 230, 232, 233, 238, 239
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, 10 (2007), Article 07.1.5., 1-13.
- Clark Kimberling, Affinely recursive sets and orderings of languages, Discrete Math., 274 (2004), 147-160.
- Index entries for 3-automatic sequences.
Crossrefs
Programs
-
Haskell
a032924 n = a032924_list !! (n-1) a032924_list = iterate f 1 where f x = 1 + if r < 2 then x else 3 * f x' where (x', r) = divMod x 3 -- Reinhard Zumkeller, Mar 07 2015, May 04 2012
-
Maple
f:= proc(n) local L,i,m; L:= convert(n,base,2); m:= nops(L); add((1+L[i])*3^(i-1),i=1..m-1); end proc: map(f, [$2..101]); # Robert Israel, Aug 04 2015
-
Mathematica
Select[Range@ 240, Last@ DigitCount[#, 3] == 0 &] (* Michael De Vlieger, Aug 05 2015 *) Flatten[Table[FromDigits[#,3]&/@Tuples[{1,2},n],{n,5}]] (* Harvey P. Dale, May 28 2016 *)
-
PARI
apply( {A032924(n)=if(n<3,n,3*self()((n-1)\2)+2-n%2)}, [1..99]) \\ M. F. Hasler, Jun 22 2020
-
PARI
a(n) = fromdigits(apply(d->d+1,binary(n+1)[^1]), 3); \\ Kevin Ryde, Jun 23 2020
-
Python
def a(n): return sum(3**i*(int(b)+1) for i, b in enumerate(bin(n+1)[:2:-1])) print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Aug 15 2022
-
Python
def is_A032924(n): while n > 2: n,r = divmod(n,3) if r==0: return False return n > 0 print([n for n in range(250) if is_A032924(n)]) # M. F. Hasler, Feb 15 2023
-
Python
def A032924(n): return int(bin(m:=n+1)[3:],3) + (3**(m.bit_length()-1)-1>>1) # Chai Wah Wu, Oct 13 2023
Formula
A081604(A107681(n)) <= A081604(A107680(n)) = A081604(a(n)) = A000523(n+1). - Reinhard Zumkeller, May 20 2005
A077267(a(n)) = 0. - Reinhard Zumkeller, Mar 02 2008
a(1)=1, a(n+1) = f(a(n)+1,a(n)+1) where f(x,y) = if x<3 and x<>0 then y, else if x mod 3 = 0 then f(y+1,y+1), else f(floor(x/3),y). - Reinhard Zumkeller, Mar 02 2008
a(2*n) = a(2*n-1)+1, n>0. - Zak Seidov, Jul 27 2009
A212193(a(n)) = 0. - Reinhard Zumkeller, May 04 2012
a(2*n+1) = 3*a(n)+1. - Robert Israel, Aug 05 2015
G.f.: x/(1-x)^2 + Sum_{m >= 1} 3^(m-1)*x^(2^(m+1)-1)/((1-x^(2^m))*(1-x)). - Robert Israel, Aug 04 2015
A065361(a(n)) = n. - Rémy Sigrist, Feb 06 2023
Sum_{n>=1} 1/a(n) = 3.4977362637842652509313189236131190039368413460747606236619907531632476445332666030262441154353753276457... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Apr 14 2025
Comments