cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033043 Sums of distinct powers of 6.

Original entry on oeis.org

0, 1, 6, 7, 36, 37, 42, 43, 216, 217, 222, 223, 252, 253, 258, 259, 1296, 1297, 1302, 1303, 1332, 1333, 1338, 1339, 1512, 1513, 1518, 1519, 1548, 1549, 1554, 1555, 7776, 7777, 7782, 7783, 7812, 7813, 7818, 7819, 7992, 7993, 7998, 7999, 8028, 8029, 8034
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-6 digits greater than 1.

Crossrefs

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 6
        end
    r end; [a(n) for n in 0:46] |> println # Peter Luschny, Jan 03 2021
    
  • Maple
    S:= {0,1}:
    for i from 1 to 6 do S:= S union (S +~ 6^i) od:
    sort(convert(S,list)); # Robert Israel, Apr 04 2025
  • Mathematica
    t = Table[FromDigits[RealDigits[n, 2], 6], {n, 0, 100}] (* Clark Kimberling, Aug 02 2012 *)
    FromDigits[#,6]&/@Tuples[{0,1},6] (* Harvey P. Dale, Mar 31 2016 *)
  • PARI
    A033043(n,b=6)=subst(Pol(binary(n)),'x,b) \\ M. F. Hasler, Feb 01 2016
    
  • PARI
    a(n)=fromdigits(binary(n), 6) \\ Charles R Greathouse IV, Jan 11 2017
    
  • Python
    def A033043(n): return int(bin(n)[2:],6) # Chai Wah Wu, Apr 04 2025

Formula

a(n) = Sum_{i=0..m} d(i)*6^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097252(n)/5.
a(2n) = 6*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*6^k. - Philippe Deléham, Oct 20 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 6^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004