A033048 Sums of distinct powers of 12.
0, 1, 12, 13, 144, 145, 156, 157, 1728, 1729, 1740, 1741, 1872, 1873, 1884, 1885, 20736, 20737, 20748, 20749, 20880, 20881, 20892, 20893, 22464, 22465, 22476, 22477, 22608, 22609, 22620, 22621, 248832, 248833, 248844, 248845, 248976
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1023
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
- Eric Weisstein's World of Mathematics, Duodecimal
- Wikipedia, Duodecimal
Programs
-
Haskell
import Data.List (unfoldr) a033048 n = a033048_list !! (n-1) a033048_list = filter (all (< 2) . unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 12)) [1..] -- Reinhard Zumkeller, Apr 17 2011
-
Mathematica
With[{k = 12}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
-
PARI
{maxn=37; for(vv=0,maxn, bvv=binary(vv); ll=length(bvv);texp=0;btod=0; forstep(i=ll,1,-1,btod=btod+bvv[i]*12^texp;texp++); print1(btod,", "))} \\ Douglas Latimer, Apr 16 2012
-
PARI
a(n)=fromdigits(binary(n),12) \\ Charles R Greathouse IV, Jan 11 2017
Formula
a(n) = Sum_{i=0..m} d(i)*12^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097258(n)/11.
a(2n) = 12*a(n), a(2n+1) = a(2n)+1.
G.f.: (1/(1 - x))*Sum_{k>=0} 12^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017
Extensions
Extended by Ray Chandler, Aug 03 2004
Comments