cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033048 Sums of distinct powers of 12.

Original entry on oeis.org

0, 1, 12, 13, 144, 145, 156, 157, 1728, 1729, 1740, 1741, 1872, 1873, 1884, 1885, 20736, 20737, 20748, 20749, 20880, 20881, 20892, 20893, 22464, 22465, 22476, 22477, 22608, 22609, 22620, 22621, 248832, 248833, 248844, 248845, 248976
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-12 digits greater than 1.

Crossrefs

Subsequence of A102487.
Row 11 of array A104257.

Programs

  • Haskell
    import Data.List (unfoldr)
    a033048 n = a033048_list !! (n-1)
    a033048_list = filter (all (< 2) . unfoldr (\x ->
       if x == 0 then Nothing else Just $ swap $ divMod x 12)) [1..]
    -- Reinhard Zumkeller, Apr 17 2011
  • Mathematica
    With[{k = 12}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
  • PARI
    {maxn=37;
    for(vv=0,maxn,
    bvv=binary(vv);
    ll=length(bvv);texp=0;btod=0;
    forstep(i=ll,1,-1,btod=btod+bvv[i]*12^texp;texp++);
    print1(btod,", "))}
    \\ Douglas Latimer, Apr 16 2012
    
  • PARI
    a(n)=fromdigits(binary(n),12) \\ Charles R Greathouse IV, Jan 11 2017
    

Formula

a(n) = Sum_{i=0..m} d(i)*12^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097258(n)/11.
a(2n) = 12*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(k) = 12^k = A001021(k). - Philippe Deléham, Oct 19 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 12^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004