A033115 Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
1, 5, 26, 130, 651, 3255, 16276, 81380, 406901, 2034505, 10172526, 50862630, 254313151, 1271565755, 6357828776, 31789143880, 158945719401, 794728597005, 3973642985026, 19868214925130, 99341074625651, 496705373128255
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,1,-5).
Crossrefs
Cf. A015531.
Programs
-
Magma
[Round((5*5^n-3)/24): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
-
Maple
seq(1/3*floor(5^(n+1)/8),n=1..32); # Mircea Merca, Dec 26 2010
-
Mathematica
Table[FromDigits[PadRight[{},n,{1,0}],5],{n,30}] (* or *) LinearRecurrence[ {5,1,-5},{1,5,26},30] (* Harvey P. Dale, Jan 28 2017 *)
Formula
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3). - Joerg Arndt, Jan 08 2011
From Paul Barry, Nov 12 2003: (Start)
a(n) = floor(5^(n+2)/24);
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k);
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*5^j.
Partial sums of A083425.
G.f.: 1/((1-x)*(1+x)*(1-5*x));
a(n) = 4*a(n-1) + 5*a(n-2) + 1. (End)
From Mircea Merca, Dec 28 2010: (Start)
a(n) = (1/3)*floor(5^(n+1)/8) = floor((5*5^n - 1)/24) = round((5*5^n - 3)/24) = round((5*5^n - 5)/24) = ceiling((5*5^n - 5)/24);
a(n) = a(n-2) + 5^(n-1), n > 1. (End)
Comments