cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033118 Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.

Original entry on oeis.org

1, 8, 65, 520, 4161, 33288, 266305, 2130440, 17043521, 136348168, 1090785345, 8726282760, 69810262081, 558482096648, 4467856773185, 35742854185480, 285942833483841, 2287542667870728, 18300341342965825, 146402730743726600
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A015565. - Mircea Merca, Dec 28 2010

Crossrefs

Pairwise sums are (8^n - 1)/7 (A023001).

Programs

  • Magma
    [Round((8*8^n-8)/63): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
  • Maple
    seq(1/7*floor(8^(n+1)/9),n=1..22); # Mircea Merca, Dec 27 2010
  • Mathematica
    Table[FromDigits[PadRight[{},n,{1,0}],8],{n,20}] (* or *) LinearRecurrence[ {8,1,-8},{1,8,65},20] (* Harvey P. Dale, Jan 20 2021 *)

Formula

a(n) = 8*a(n-1) + a(n-2) - 8*a(n-3).
a(n) = 2^(3*n+3)/63 - 1/14 - (-1)^n/18. - R. J. Mathar, Jan 08 2011
From Paul Barry, Apr 04 2008: (Start)
G.f. x/((1-x^2)*(1-8*x));
a(n) = (1/3)*Sum_{k=0..n} A001045(3k). (End)
a(n) = floor(8^(n+1)/9)/7 = floor((8*8^n-1)/63) = round((8*8^n-8)/63) = round((16*8^n-9)/63) = ceiling((8*8^n-8)/63). a(n) = a(n-2) + 8^(n-1), n > 2. - Mircea Merca, Dec 28 2010