A033120 Base-2 digits of a(n) are, in order, the first n terms of the periodic sequence with initial period 1,0,1.
1, 2, 5, 11, 22, 45, 91, 182, 365, 731, 1462, 2925, 5851, 11702, 23405, 46811, 93622, 187245, 374491, 748982, 1497965, 2995931, 5991862, 11983725, 23967451, 47934902, 95869805, 191739611, 383479222, 766958445, 1533916891
Offset: 1
References
- B. Averbach & O. Chein, "A Variant Of The Tower Of Brahma" in 'The Journal of Recreational Mathematics', pp. 48-55, vol. 33, no. 1, 2004-5, Baywood, NY.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,1,-2).
Programs
-
Mathematica
Table[FromDigits[PadRight[{},n,{1,0,1}],2],{n,40}] (* Harvey P. Dale, Aug 26 2016 *)
-
PARI
a(n)=if(n%3==0,5*8^(n/3)-5,if(n%3==1,10*8^((n-1)/3)-3,20*8^((n-2)/3)-6))/7 \\ Ralf Stephan
-
PARI
a(n)=(5*2^n)\7 \\ Tani Akinari, Jul 15 2014
Formula
From Ralf Stephan, May 05 2004: (Start)
a(3*n) = (5*8^n - 5)/7, a(3*n+1) = (10*8^n - 3)/7, a(3*n+2) = (20*8^n - 6)/7.
G.f.: (1+x^2)/((1-x)*(1-2*x)*(1+x+x^2)). (End)
a(n) = a(n-6) + 45*2^(n-6). - Lekraj Beedassy, Sep 12 2006
The following recurrence produces this sequence: if(n==1) a(n)=1; else if(n%3==2) a(n)=a(n-1)*2; otherwise a(n)=a(n-1)*2+1. - Piotr Kakol, Jan 24 2011 (in an email message to N. J. A. Sloane).
a(n) = floor( (5/7)*2^n ). - Tani Akinari, Jul 15 2014
From Jorijn Lamberink and Paul van de Veen, Oct 14 2019: (Start)
a(n) = T(n-1) + 1 + T(n-3) + 1 + a(n-3), where T(n) = A000225(n) = 2^n-1 is the number of moves for a classic Tower of Hanoi with n discs.
a(n) = (5/8)*2^n + a(n-3).
a(n) = (5/7)*2^n - 2/3 - (1/21)*cos((2/3)*Pi*n) + (1/7)*sqrt(3)*sin((2/3)*Pi*n). (End)
Extensions
More terms from Lekraj Beedassy, Sep 12 2006
Comments