cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033129 Base-2 digits are, in order, the first n terms of the periodic sequence with initial period [1,1,0].

Original entry on oeis.org

0, 1, 3, 6, 13, 27, 54, 109, 219, 438, 877, 1755, 3510, 7021, 14043, 28086, 56173, 112347, 224694, 449389, 898779, 1797558, 3595117, 7190235, 14380470, 28760941, 57521883, 115043766, 230087533, 460175067, 920350134, 1840700269
Offset: 0

Views

Author

Keywords

Comments

Number of moves to separate a Hanoi Tower into two towers of even resp. odd stones. - Martin von Gagern, May 26 2004
From Reinhard Zumkeller, Feb 22 2010: (Start)
Terms of A173593 with initial digits '11' in binary representation: a(n) = A173593(2*n-3) for n>0;
for n>0: a(3*n-1) = A083713(n);
a(n+1) - a(n) = abs(A078043(n)). (End)

Crossrefs

Cf. A011655 (repeat 0,1,1), A289006 (the same in octal).
Cf. A057744, A294627 (first differences).

Programs

  • Mathematica
    Table[(1/14)*(-9 - 2*(-1)^Floor[(2 n)/3] + (-1)^(1 + Floor[(1/3)*(7 + 2 n)]) + 3*2^(2 + n)), {n, 0, 100}] (* John M. Campbell, Dec 26 2016 *)
    Table[FromDigits[PadRight[{},n,{1,1,0}],2],{n,0,40}] (* Harvey P. Dale, Oct 02 2022 *)
  • PARI
    A033129(n)=3<<(n+1)\7 \\ M. F. Hasler, Jun 23 2017
    
  • Python
    print([(6*2**n//7) for n in range(50)]) # Karl V. Keller, Jr., Jul 11 2022

Formula

From Paul Barry, Jan 23 2004: (Start)
Partial sums of abs(A078043).
G.f.: x*(1+x)/((1-x)*(1-2*x)*(1+x+x^2)) = x*(1+x)/(1-2*x-x^3+2*x^4).
a(n) = (6/7)*2^n - (4/21)*cos(2*Pi*n/3) - (2/21)*sqrt(3)*sin(2*Pi*n/3) - 2/3. (End)
a(n) = a(n-3) + 3 * 2^(n-3). - Martin von Gagern, May 26 2004
a(n+1) = 2*a(n) + 1 - 0^((a(n)+1) mod 4). - Reinhard Zumkeller, Feb 22 2010
a(n) = floor(2^(n+1)*3/7). - Jean-Marie Madiot, Oct 05 2012
a(n) = (1/14)*(-9 - 2*(-1)^floor((2n)/3) + (-1)^(floor((2*n + 7)/3) + 1) + 3*2^(n + 2)). - John M. Campbell, Dec 26 2016