A262849
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each row divisible by 7 and column not divisible by 7, read as a binary number with top and left being the most significant bits.
Original entry on oeis.org
6, 6, 13, 12, 34, 27, 318, 196, 132, 54, 900, 3181, 1336, 396, 109, 4536, 31050, 37635, 5184, 1264, 219, 34782, 352880, 771084, 420654, 31512, 3962, 438, 178926, 4679725, 17912392, 14762016, 3896365, 175820, 11886, 877, 1042284, 58693450, 481968171
Offset: 1
Some solutions for n=3 k=4
..0..1..1..1..0..0....0..0..0..1..1..1....0..0..1..1..1..0....0..0..0..0..0..0
..0..0..0..1..1..1....1..1..1..0..0..0....0..1..1..1..0..0....1..1..1..1..1..1
..0..0..1..1..1..0....0..1..0..1..0..1....1..1..0..0..0..1....1..0..0..0..1..1
..0..0..1..1..1..0....0..1..0..1..0..1....0..1..1..1..0..0....1..0..0..0..1..1
..1..1..1..1..1..1....0..1..0..1..0..1....1..1..1..0..0..0....1..0..0..0..1..1
A083713
a(n) = (8^n - 1)*3/7.
Original entry on oeis.org
0, 3, 27, 219, 1755, 14043, 112347, 898779, 7190235, 57521883, 460175067, 3681400539, 29451204315, 235609634523, 1884877076187, 15079016609499, 120632132875995, 965057063007963, 7720456504063707, 61763652032509659
Offset: 0
From _Zerinvary Lajos_, Jan 14 2007: (Start)
Octal..........decimal:
0....................0
3....................3
33..................27
333................219
3333..............1755
33333............14043
333333..........112347
3333333.........898779
33333333.......7190235
333333333.....57521883
3333333333...460175067
etc. (End)
-
(3/7)(8^Range[0,20]-1) (* or *) LinearRecurrence[{9,-8},{0,3},30] (* or *) NestList[8#+3&,0,30] (* Harvey P. Dale, Jun 06 2013 *)
-
a(n)=(8^n-1)*3/7 \\ Charles R Greathouse IV, Oct 07 2015
A294627
Expansion of x*(1 + x)/((1-2*x)*(1+x+x^2)).
Original entry on oeis.org
0, 1, 2, 3, 7, 14, 27, 55, 110, 219, 439, 878, 1755, 3511, 7022, 14043, 28087, 56174, 112347, 224695, 449390, 898779, 1797559, 3595118, 7190235, 14380471, 28760942, 57521883, 115043767, 230087534, 460175067, 920350135, 1840700270, 3681400539, 7362801079, 14725602158, 29451204315
Offset: 0
For n=4 there are 6*7=42 quaternary sequences of length 4 such that each triple (i.e., exactly two of them: q1,q2,q3 and q2,q3,q4) contain both 0 and 3. They are 003x, 030x, 03y0, 0330, 330x, 303x, 30y3, 3003, 0y30, 3y03, y03x, y30x, where x=0,1,2,3 and y=1,2.
-
LinearRecurrence[{1, 1, 2}, {0, 1, 2}, 50] (* Paolo Xausa, Aug 28 2024 *)
-
my(x='x+O('x^99)); concat(0, Vec(x*(1+x)/(1-x-x^2-2*x^3))) \\ Altug Alkan, Mar 03 2018
A078043
Expansion of (1 - x)/(1 + x - x^2 + 2*x^3).
Original entry on oeis.org
1, -2, 3, -7, 14, -27, 55, -110, 219, -439, 878, -1755, 3511, -7022, 14043, -28087, 56174, -112347, 224695, -449390, 898779, -1797559, 3595118, -7190235, 14380471, -28760942, 57521883, -115043767, 230087534, -460175067, 920350135, -1840700270, 3681400539, -7362801079
Offset: 0
-
f:= gfun:-rectoproc({a(0)=1, a(1)=-2, a(2)=3, a(n) = -a(n-1) + a(n-2) - 2*a(n-3)},a(n),remember):
map(f, [$0..40]); # Robert Israel, Mar 28 2018
-
CoefficientList[Series[(1-x)/(1+x-x^2+2x^3),{x,0,40}],x] (* or *) LinearRecurrence[{-1,1,-2},{1,-2,3},40] (* Harvey P. Dale, Feb 02 2012 *)
-
Vec((1-x)/(1+x-x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
a(n)=1/7*(6*(-2)^n+[1,-2,-3,-1,2,3][(n%6)+1]) /* Ralf Stephan, Aug 18 2013 */
-
a(n)=(6*(-2)^n+3)\7 \\ Tani Akinari, Oct 05 2014
A173593
Numbers having in binary representation exactly two ones in three consecutive digits.
Original entry on oeis.org
3, 5, 6, 11, 13, 22, 27, 45, 54, 91, 109, 182, 219, 365, 438, 731, 877, 1462, 1755, 2925, 3510, 5851, 7021, 11702, 14043, 23405, 28086, 46811, 56173, 93622, 112347, 187245, 224694, 374491, 449389, 748982, 898779, 1497965, 1797558, 2995931, 3595117
Offset: 1
a(10) = 91 = 1011011_2
a(11) = 109 = 1101101_2
a(12) = 182 = 10110110_2
a(13) = 219 = 11011011_2
a(14) = 365 = 101101101_2
a(15) = 438 = 110110110_2
a(16) = 731 = 1011011011_2
a(17) = 877 = 1101101101_2
a(18) = 1462 = 10110110110_2
a(19) = 1755 = 11011011011_2
a(20) = 2925 = 101101101101_2
-
LinearRecurrence[{0, 2, 1, 0, -2}, {3, 5, 6, 11, 13}, 50] (* Jean-François Alcover, Feb 17 2018 *)
A113836
a(n) = Sum[2^(A001651(i-1)-1), {i,1,n}].
Original entry on oeis.org
1, 3, 11, 27, 91, 219, 731, 1755, 5851, 14043, 46811, 112347, 374491, 898779, 2995931, 7190235, 23967451, 57521883, 191739611, 460175067, 1533916891, 3681400539, 12271335131, 29451204315, 98170681051, 235609634523
Offset: 1
a(2) = 2^(A001651(0)-1) + 2^(A001651(1)-1) = 2^0 + 2^1 = 3
-
a = {}; s = 0; For[n = 1, n < 40, n++, If[Length[Intersection[{Mod[n, 3]}, {1,2}]] > 0, s = s + 2^(n - 1); AppendTo[a, s]]]; a
A289006
Conversion to octal of the binary expansion given by the first n terms of the period-3 sequence A011655 (repeat 0, 1, 1).
Original entry on oeis.org
0, 1, 3, 6, 15, 33, 66, 155, 333, 666, 1555, 3333, 6666, 15555, 33333, 66666, 155555, 333333, 666666, 1555555, 3333333, 6666666, 15555555, 33333333, 66666666, 155555555, 333333333, 666666666, 1555555555, 3333333333, 6666666666, 15555555555, 33333333333, 66666666666, 155555555555, 333333333333, 666666666666
Offset: 1
-
{ my(x='x+O('x^33)); concat([0],Vec( x*(1+x)*(1+2*x+4*x^2)/((1-x)*(1+x+x^2)*(1-10*x^3)) )) } \\ Joerg Arndt, Jun 21 2017
-
A289006(n)=if(n%3==2,10^(n\3+1)\6-10^(n\3)\9,10^(n\3)\3<<(n%3)) \\ M. F. Hasler, Jun 23 2017
A057744
Expansion of (1-2*x^3)/(1-2*x-x^3+2*x^4).
Original entry on oeis.org
1, 2, 4, 7, 14, 28, 55, 110, 220, 439, 878, 1756, 3511, 7022, 14044, 28087, 56174, 112348, 224695, 449390, 898780, 1797559, 3595118, 7190236, 14380471, 28760942, 57521884, 115043767, 230087534, 460175068, 920350135, 1840700270, 3681400540
Offset: 0
-
LinearRecurrence[{2, 0, 1, -2}, {1, 2, 4, 7}, 30] (* Jinyuan Wang, Apr 07 2020 *)
-
Vec((1-2*x^3)/(1-2*x-x^3+2*x^4) + O(x^50)) \\ Michel Marcus, Dec 09 2014
Showing 1-8 of 8 results.
Comments