cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A262849 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each row divisible by 7 and column not divisible by 7, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

6, 6, 13, 12, 34, 27, 318, 196, 132, 54, 900, 3181, 1336, 396, 109, 4536, 31050, 37635, 5184, 1264, 219, 34782, 352880, 771084, 420654, 31512, 3962, 438, 178926, 4679725, 17912392, 14762016, 3896365, 175820, 11886, 877, 1042284, 58693450, 481968171
Offset: 1

Views

Author

R. H. Hardin, Oct 03 2015

Keywords

Comments

Table starts
....6......6.......12........318..........900..........4536.........34782
...13.....34......196.......3181........31050........352880.......4679725
...27....132.....1336......37635.......771084......17912392.....481968171
...54....396.....5184.....420654.....14762016.....661066920...35819485902
..109...1264....31512....3896365....290338650...26232879096.2864161217701
..219...3962...175820...39348387...5692555116.1007501698644
..438..11886...793812..417279054.108936025308
..877..35914..4140908.3999504445
.1755.108556.21744992
.3510.325668

Examples

			Some solutions for n=3 k=4
..0..1..1..1..0..0....0..0..0..1..1..1....0..0..1..1..1..0....0..0..0..0..0..0
..0..0..0..1..1..1....1..1..1..0..0..0....0..1..1..1..0..0....1..1..1..1..1..1
..0..0..1..1..1..0....0..1..0..1..0..1....1..1..0..0..0..1....1..0..0..0..1..1
..0..0..1..1..1..0....0..1..0..1..0..1....0..1..1..1..0..0....1..0..0..0..1..1
..1..1..1..1..1..1....0..1..0..1..0..1....1..1..1..0..0..0....1..0..0..0..1..1
		

Crossrefs

Column 1 is A033129(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4)
k=2: [order 15]
k=3: [order 43]
k=4: [order 29]
Empirical for row n:
n=1: [linear recurrence of order 16]

A083713 a(n) = (8^n - 1)*3/7.

Original entry on oeis.org

0, 3, 27, 219, 1755, 14043, 112347, 898779, 7190235, 57521883, 460175067, 3681400539, 29451204315, 235609634523, 1884877076187, 15079016609499, 120632132875995, 965057063007963, 7720456504063707, 61763652032509659
Offset: 0

Views

Author

Klaus Brockhaus, Jun 14 2003

Keywords

Comments

Fixed points of the mapping defined by A067585. In binary these numbers show a regular pattern: 0, 11, 11011, 11011011, 11011011011, etc.
From Reinhard Zumkeller, Feb 22 2010: (Start)
a(n) = A173593(6*n-5) for n > 0:
terms of A173593 beginning and ending with digits '11' in binary representation;
for n > 0: a(n) = A033129(3*n-1); a(n) - a(n-1) = A103333(n). (End)

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Octal..........decimal:
0....................0
3....................3
33..................27
333................219
3333..............1755
33333............14043
333333..........112347
3333333.........898779
33333333.......7190235
333333333.....57521883
3333333333...460175067
etc. (End)
		

Crossrefs

Programs

  • Mathematica
    (3/7)(8^Range[0,20]-1) (* or *) LinearRecurrence[{9,-8},{0,3},30] (* or *) NestList[8#+3&,0,30] (* Harvey P. Dale, Jun 06 2013 *)
  • PARI
    a(n)=(8^n-1)*3/7 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 3*A023001(n).
Recursion: a(0) = 0, a(n+1) = (((a(n)*2)*2+1)*2+1).
a(n) = 8*a(n-1) + 3 (with a(0)=0). - Vincenzo Librandi, Aug 08 2010
a(0)=0, a(1)=3, a(n) = 9*a(n-1) - 8*a(n-2). - Harvey P. Dale, Jun 06 2013
From Stefano Spezia, Feb 23 2025: (Start)
G.f.: 3*x/((1 - x)*(1 - 8*x)).
E.g.f.: 3*exp(x)*(exp(7*x) - 1)/7. (End)

A294627 Expansion of x*(1 + x)/((1-2*x)*(1+x+x^2)).

Original entry on oeis.org

0, 1, 2, 3, 7, 14, 27, 55, 110, 219, 439, 878, 1755, 3511, 7022, 14043, 28087, 56174, 112347, 224695, 449390, 898779, 1797559, 3595118, 7190235, 14380471, 28760942, 57521883, 115043767, 230087534, 460175067, 920350135, 1840700270, 3681400539, 7362801079, 14725602158, 29451204315
Offset: 0

Views

Author

Wojciech Florek, Feb 12 2018

Keywords

Comments

A generalized tribonacci (A001590) sequence.
For n > 2, 6*a(n) is the number of quaternary sequences of length n in which all triples (q(i),q(i+1),q(i+2)) contain two (arbitrarily chosen) digits, e.g., 0 and 3.
Similarly, recurrences a(n) = a(n-1) + a(n-2) + k*a(n-3) are related to binary (k=0, the Fibonacci sequence A000045), ternary (k=1, the tribonacci sequence A001590), quinary (k=3) and so on sequences with all triples (t(i),t(i+1),t(i+2)) containing two (arbitrarily chosen) digits (usually 0 and k+1).
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a tromino. - Greg Dresden and Bora Bursalı, Aug 31 2023
For n > 1, a(n) is the number of ways to tile a strip of length n-2 with squares, dominoes, and two colors of trominoes, where the strip begins with an upper level of two cells. For example, when n=7 we have this strip of length 5:
_
|||_____
|||_|||. - Guanji Chen and Greg Dresden, Jun 17 2024

Examples

			For n=4 there are 6*7=42 quaternary sequences of length 4 such that each triple (i.e., exactly two of them: q1,q2,q3 and q2,q3,q4) contain both 0 and 3. They are 003x, 030x, 03y0, 0330, 330x, 303x, 30y3, 3003, 0y30, 3y03, y03x, y30x, where x=0,1,2,3 and y=1,2.
		

Crossrefs

Cf. A000045, A001590, A007040, A033129 (partial sums), A078043, A167373.

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 2}, {0, 1, 2}, 50] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x*(1+x)/(1-x-x^2-2*x^3))) \\ Altug Alkan, Mar 03 2018

Formula

a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.
a(n+1)/a(n) tends to 2, the unique real root of x^3 - x^2 - x - 2 = 0.
a(n+1) = abs(A078043(n)).
7*a(n) = 3*2^n - A167373(n+1). - R. J. Mathar, Mar 24 2018
E.g.f.: exp(-x/2)*(9*exp(5*x/2) - 9*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/21. - Stefano Spezia, Aug 29 2024

A078043 Expansion of (1 - x)/(1 + x - x^2 + 2*x^3).

Original entry on oeis.org

1, -2, 3, -7, 14, -27, 55, -110, 219, -439, 878, -1755, 3511, -7022, 14043, -28087, 56174, -112347, 224695, -449390, 898779, -1797559, 3595118, -7190235, 14380471, -28760942, 57521883, -115043767, 230087534, -460175067, 920350135, -1840700270, 3681400539, -7362801079
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

abs(a(n)) = A033129(n+1) - A033129(n). - Reinhard Zumkeller, Feb 22 2010

Programs

  • Maple
    f:= gfun:-rectoproc({a(0)=1, a(1)=-2, a(2)=3, a(n) = -a(n-1) + a(n-2) - 2*a(n-3)},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Mar 28 2018
  • Mathematica
    CoefficientList[Series[(1-x)/(1+x-x^2+2x^3),{x,0,40}],x] (* or *) LinearRecurrence[{-1,1,-2},{1,-2,3},40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    Vec((1-x)/(1+x-x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n)=1/7*(6*(-2)^n+[1,-2,-3,-1,2,3][(n%6)+1]) /* Ralf Stephan, Aug 18 2013 */
    
  • PARI
    a(n)=(6*(-2)^n+3)\7 \\ Tani Akinari, Oct 05 2014

Formula

a(0)=1, a(1)=-2, a(2)=3, a(n) = -a(n-1) + a(n-2) - 2*a(n-3). - Harvey P. Dale, Feb 02 2012 [corrected by Wojciech Florek, Feb 26 2018]
a(n) = (1/21) * (-9*2^n*e^(i*n*Pi) + 9*cos((n*Pi)/3) - sqrt(3)*sin((n*Pi)/3)). - Harvey P. Dale, Feb 02 2012
a(n) = (1/7) * (6*(-2)^n + [1,-2,-3,-1,2,3](mod 6)) = A077972(n) - A077972(n-1). - Ralf Stephan, Aug 18 2013
a(n) = floor((6*(-2)^n+3)/7). - Tani Akinari, Oct 05 2014

A173593 Numbers having in binary representation exactly two ones in three consecutive digits.

Original entry on oeis.org

3, 5, 6, 11, 13, 22, 27, 45, 54, 91, 109, 182, 219, 365, 438, 731, 877, 1462, 1755, 2925, 3510, 5851, 7021, 11702, 14043, 23405, 28086, 46811, 56173, 93622, 112347, 187245, 224694, 374491, 449389, 748982, 898779, 1497965, 1797558, 2995931, 3595117
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2010

Keywords

Comments

a(2*n-1) = A033129(n+1);
a(3*n-2) = A113836(n+1);
a(6*n-5) = A083713(n);
a(2*n) - a(2*n-1) = A077947(n+1);
a(2*n+1) - a(2*n) = A077947(n).

Examples

			a(10) =   91 =      1011011_2
a(11) =  109 =      1101101_2
a(12) =  182 =     10110110_2
a(13) =  219 =     11011011_2
a(14) =  365 =    101101101_2
a(15) =  438 =    110110110_2
a(16) =  731 =   1011011011_2
a(17) =  877 =   1101101101_2
a(18) = 1462 =  10110110110_2
a(19) = 1755 =  11011011011_2
a(20) = 2925 = 101101101101_2
		

Crossrefs

Cf. A007088.
Bisections A033129, A033120.

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 1, 0, -2}, {3, 5, 6, 11, 13}, 50] (* Jean-François Alcover, Feb 17 2018 *)

Formula

From R. J. Mathar, Feb 24 2010: (Start)
a(n) = 2*a(n-2) + a(n-3) - 2*a(n-5).
G.f.: x*(-3-5*x+2*x^3+4*x^4)/ ((1-x) * (1+x+x^2) * (2*x^2-1)). (End)

A113836 a(n) = Sum[2^(A001651(i-1)-1), {i,1,n}].

Original entry on oeis.org

1, 3, 11, 27, 91, 219, 731, 1755, 5851, 14043, 46811, 112347, 374491, 898779, 2995931, 7190235, 23967451, 57521883, 191739611, 460175067, 1533916891, 3681400539, 12271335131, 29451204315, 98170681051, 235609634523
Offset: 1

Views

Author

Artur Jasinski, Jan 27 2006

Keywords

Comments

From Reinhard Zumkeller, Feb 22 2010: (Start)
For n>1: a(n)=A173593(3*n-5): terms of A173593 ending with digits '11' in binary representation;
for n>0: a(n)=A033129(3*n-1); a(n+1)-a(n)=ABS(A094014(n)). (End)

Examples

			a(2) = 2^(A001651(0)-1) + 2^(A001651(1)-1) = 2^0 + 2^1 = 3
		

Crossrefs

Cf. A001651.

Programs

  • Mathematica
    a = {}; s = 0; For[n = 1, n < 40, n++, If[Length[Intersection[{Mod[n, 3]}, {1,2}]] > 0, s = s + 2^(n - 1); AppendTo[a, s]]]; a

Formula

Empirical g.f.: x*(2*x+1) / ((x-1)*(8*x^2-1)). - Colin Barker, Sep 01 2013

Extensions

Edited by Stefan Steinerberger, Jul 23 2007

A289006 Conversion to octal of the binary expansion given by the first n terms of the period-3 sequence A011655 (repeat 0, 1, 1).

Original entry on oeis.org

0, 1, 3, 6, 15, 33, 66, 155, 333, 666, 1555, 3333, 6666, 15555, 33333, 66666, 155555, 333333, 666666, 1555555, 3333333, 6666666, 15555555, 33333333, 66666666, 155555555, 333333333, 666666666, 1555555555, 3333333333, 6666666666, 15555555555, 33333333333, 66666666666, 155555555555, 333333333333, 666666666666
Offset: 1

Views

Author

Peter Schonefeld, Jun 21 2017

Keywords

Comments

The length of the n-th term is floor((n+1)/3) digits, for all n>1. [Corrected by M. F. Hasler, Jun 23 2017]

Crossrefs

A033129(n-1) written in base 8.
Cf. A011655. Trisections: A099915, A002277, A002280.

Programs

  • PARI
    { my(x='x+O('x^33)); concat([0],Vec( x*(1+x)*(1+2*x+4*x^2)/((1-x)*(1+x+x^2)*(1-10*x^3)) )) } \\ Joerg Arndt, Jun 21 2017
    
  • PARI
    A289006(n)=if(n%3==2,10^(n\3+1)\6-10^(n\3)\9,10^(n\3)\3<<(n%3)) \\ M. F. Hasler, Jun 23 2017

Formula

a(3n) = floor(10^n/3) (= n times the digit '3'), a(3n+1) = floor(10^n/3)*2 (= n times the digit '6'), a(3n+2) = floor(10^(n+1)/6) - floor(10^n/9) (= digit '1' followed by n digits '5'). - M. F. Hasler, Jun 23 2017
G.f.: x^2*(1+x)*(4*x^2+2*x+1) / ( (x-1)*(1+x+x^2)*(10*x^3-1) ). - R. J. Mathar, Jun 29 2017

A057744 Expansion of (1-2*x^3)/(1-2*x-x^3+2*x^4).

Original entry on oeis.org

1, 2, 4, 7, 14, 28, 55, 110, 220, 439, 878, 1756, 3511, 7022, 14044, 28087, 56174, 112348, 224695, 449390, 898780, 1797559, 3595118, 7190236, 14380471, 28760942, 57521884, 115043767, 230087534, 460175068, 920350135, 1840700270, 3681400540
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2000

Keywords

Crossrefs

Cf. A033129, A294627 (first differences).

Programs

  • Mathematica
    LinearRecurrence[{2, 0, 1, -2}, {1, 2, 4, 7}, 30] (* Jinyuan Wang, Apr 07 2020 *)
  • PARI
    Vec((1-2*x^3)/(1-2*x-x^3+2*x^4) + O(x^50)) \\ Michel Marcus, Dec 09 2014

Formula

G.f.: (1-2*x^3)/(1-2*x-x^3+2*x^4).
a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 7, a(n) = 2*a(n-1) + a(n-3) - 2*a(n-4) for n > 3. - Jinyuan Wang, Apr 08 2020
a(n) = ceiling((6/7)*2^n) = (6*2^n + 2^(n mod 3))/7. - Kevin Ryde, Aug 25 2021
Showing 1-8 of 8 results.