cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113405 Expansion of x^3/(1 - 2*x + x^3 - 2*x^4) = x^3/( (1-2*x)*(1+x)*(1-x+x^2) ).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 14, 28, 57, 114, 228, 455, 910, 1820, 3641, 7282, 14564, 29127, 58254, 116508, 233017, 466034, 932068, 1864135, 3728270, 7456540, 14913081, 29826162, 59652324, 119304647, 238609294, 477218588, 954437177, 1908874354, 3817748708
Offset: 0

Views

Author

Paul Barry, Oct 28 2005

Keywords

Comments

A transform of the Jacobsthal numbers. A059633 is the equivalent transform of the Fibonacci numbers.
Paul Curtz, Aug 05 2007, observes that the inverse binomial transform of 0,0,0,1,2,4,7,14,28,57,114,228,455,910,1820,... gives the same sequence up to signs. That is, the extended sequence is an eigensequence for the inverse binomial transform (an autosequence).
The round() function enables the closed (non-recurrence) formula to take a very simple form: see Formula section. This can be generalized without loss of simplicity to a(n) = round(b^n/c), where b and c are very small, incommensurate integers (c may also be an integer fraction). Particular choices of small integers for b and c produce a number of well-known sequences which are usually defined by a recurrence - see Cross Reference. - Ross Drewe, Sep 03 2009

Crossrefs

From Ross Drewe, Sep 03 2009: (Start)
Other sequences a(n) = round(b^n / c), where b and c are very small integers:
A001045 b = 2; c = 3
A007910 b = 2; c = 5
A016029 b = 2; c = 5/3
A077947 b = 2; c = 7
abs(A078043) b = 2; c = 7/3
A007051 b = 3; c = 2
A015518 b = 3; c = 4
A034478 b = 5; c = 2
A003463 b = 5; c = 4
A015531 b = 5; c = 6
(End)

Programs

  • Magma
    [Round(2^n/9): n in [0..40]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A010892 := proc(n) op((n mod 6)+1,[1,1,0,-1,-1,0]) ; end proc:
    A113405 := proc(n) (2^n-(-1)^n)/9 -A010892(n-1)/3; end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    CoefficientList[Series[x^3/(1-2x+x^3-2x^4),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    a(n)=2^n\/9 \\ Charles R Greathouse IV, Jun 05 2011
    
  • Python
    def A113405(n): return ((1<Chai Wah Wu, Apr 17 2025

Formula

a(n) = 2a(n-1) - a(n-3) + 2a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A001045(k).
a(n) = Sum_{k=0..n} binomial((n+k)/2,k)*A001045((n-k)/2)*(1+(-1)^(n-k))/2.
a(3n) = A015565(n), a(3n+1) = 2*A015565(n), a(3n+2) = 4*A015565(n). - Paul Curtz, Nov 30 2007
From Paul Curtz, Dec 16 2007: (Start)
a(n+1) - 2a(n) = A131531(n).
a(n) + a(n+3) = 2^n. (End)
a(n) = round(2^n/9). - Ross Drewe, Sep 03 2009
9*a(n) = 2^n + (-1)^n - 3*A010892(n). - R. J. Mathar, Mar 24 2018

Extensions

Edited by N. J. A. Sloane, Dec 13 2007

A033129 Base-2 digits are, in order, the first n terms of the periodic sequence with initial period [1,1,0].

Original entry on oeis.org

0, 1, 3, 6, 13, 27, 54, 109, 219, 438, 877, 1755, 3510, 7021, 14043, 28086, 56173, 112347, 224694, 449389, 898779, 1797558, 3595117, 7190235, 14380470, 28760941, 57521883, 115043766, 230087533, 460175067, 920350134, 1840700269
Offset: 0

Views

Author

Keywords

Comments

Number of moves to separate a Hanoi Tower into two towers of even resp. odd stones. - Martin von Gagern, May 26 2004
From Reinhard Zumkeller, Feb 22 2010: (Start)
Terms of A173593 with initial digits '11' in binary representation: a(n) = A173593(2*n-3) for n>0;
for n>0: a(3*n-1) = A083713(n);
a(n+1) - a(n) = abs(A078043(n)). (End)

Crossrefs

Cf. A011655 (repeat 0,1,1), A289006 (the same in octal).
Cf. A057744, A294627 (first differences).

Programs

  • Mathematica
    Table[(1/14)*(-9 - 2*(-1)^Floor[(2 n)/3] + (-1)^(1 + Floor[(1/3)*(7 + 2 n)]) + 3*2^(2 + n)), {n, 0, 100}] (* John M. Campbell, Dec 26 2016 *)
    Table[FromDigits[PadRight[{},n,{1,1,0}],2],{n,0,40}] (* Harvey P. Dale, Oct 02 2022 *)
  • PARI
    A033129(n)=3<<(n+1)\7 \\ M. F. Hasler, Jun 23 2017
    
  • Python
    print([(6*2**n//7) for n in range(50)]) # Karl V. Keller, Jr., Jul 11 2022

Formula

From Paul Barry, Jan 23 2004: (Start)
Partial sums of abs(A078043).
G.f.: x*(1+x)/((1-x)*(1-2*x)*(1+x+x^2)) = x*(1+x)/(1-2*x-x^3+2*x^4).
a(n) = (6/7)*2^n - (4/21)*cos(2*Pi*n/3) - (2/21)*sqrt(3)*sin(2*Pi*n/3) - 2/3. (End)
a(n) = a(n-3) + 3 * 2^(n-3). - Martin von Gagern, May 26 2004
a(n+1) = 2*a(n) + 1 - 0^((a(n)+1) mod 4). - Reinhard Zumkeller, Feb 22 2010
a(n) = floor(2^(n+1)*3/7). - Jean-Marie Madiot, Oct 05 2012
a(n) = (1/14)*(-9 - 2*(-1)^floor((2n)/3) + (-1)^(floor((2*n + 7)/3) + 1) + 3*2^(n + 2)). - John M. Campbell, Dec 26 2016

A294627 Expansion of x*(1 + x)/((1-2*x)*(1+x+x^2)).

Original entry on oeis.org

0, 1, 2, 3, 7, 14, 27, 55, 110, 219, 439, 878, 1755, 3511, 7022, 14043, 28087, 56174, 112347, 224695, 449390, 898779, 1797559, 3595118, 7190235, 14380471, 28760942, 57521883, 115043767, 230087534, 460175067, 920350135, 1840700270, 3681400539, 7362801079, 14725602158, 29451204315
Offset: 0

Views

Author

Wojciech Florek, Feb 12 2018

Keywords

Comments

A generalized tribonacci (A001590) sequence.
For n > 2, 6*a(n) is the number of quaternary sequences of length n in which all triples (q(i),q(i+1),q(i+2)) contain two (arbitrarily chosen) digits, e.g., 0 and 3.
Similarly, recurrences a(n) = a(n-1) + a(n-2) + k*a(n-3) are related to binary (k=0, the Fibonacci sequence A000045), ternary (k=1, the tribonacci sequence A001590), quinary (k=3) and so on sequences with all triples (t(i),t(i+1),t(i+2)) containing two (arbitrarily chosen) digits (usually 0 and k+1).
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a tromino. - Greg Dresden and Bora Bursalı, Aug 31 2023
For n > 1, a(n) is the number of ways to tile a strip of length n-2 with squares, dominoes, and two colors of trominoes, where the strip begins with an upper level of two cells. For example, when n=7 we have this strip of length 5:
_
|||_____
|||_|||. - Guanji Chen and Greg Dresden, Jun 17 2024

Examples

			For n=4 there are 6*7=42 quaternary sequences of length 4 such that each triple (i.e., exactly two of them: q1,q2,q3 and q2,q3,q4) contain both 0 and 3. They are 003x, 030x, 03y0, 0330, 330x, 303x, 30y3, 3003, 0y30, 3y03, y03x, y30x, where x=0,1,2,3 and y=1,2.
		

Crossrefs

Cf. A000045, A001590, A007040, A033129 (partial sums), A078043, A167373.

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 2}, {0, 1, 2}, 50] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x*(1+x)/(1-x-x^2-2*x^3))) \\ Altug Alkan, Mar 03 2018

Formula

a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.
a(n+1)/a(n) tends to 2, the unique real root of x^3 - x^2 - x - 2 = 0.
a(n+1) = abs(A078043(n)).
7*a(n) = 3*2^n - A167373(n+1). - R. J. Mathar, Mar 24 2018
E.g.f.: exp(-x/2)*(9*exp(5*x/2) - 9*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/21. - Stefano Spezia, Aug 29 2024
Showing 1-3 of 3 results.