cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033196 a(n) = n^3 * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 12, 36, 96, 150, 432, 392, 768, 972, 1800, 1452, 3456, 2366, 4704, 5400, 6144, 5202, 11664, 7220, 14400, 14112, 17424, 12696, 27648, 18750, 28392, 26244, 37632, 25230, 64800, 30752, 49152, 52272, 62424, 58800, 93312, 52022, 86640
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n*DivisorSum[n, MoebiusMu[n/#] DivisorSigma[1, #^2]&]; Array[a, 40] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    a(n)=direuler(p=2,n,(1+p^2*X)/(1-p^3*X))[n]
    
  • PARI
    a(n)=sumdiv(n,d,moebius(d)*sigma(n^3/d^2)) \\ Benoit Cloitre, Feb 16 2008

Formula

Dirichlet g.f.: zeta(s-2)*zeta(s-3)/zeta(2*s-4).
a(n) = n^2 * A001615(n) = n * A000082(n).
Multiplicative with a(p^e) = p^e*p^(2*e-1)*(p+1). - Vladeta Jovovic, Nov 16 2001
a(n) = Sum_{d|n} mu(d)*sigma(n^3/d^2). - Benoit Cloitre, Feb 16 2008
a(n) = A001615(n^3) = A001615(n^k)/n^(k-3), with k>2. - Enrique Pérez Herrero, Mar 06 2012
Sum_{k=1..n} a(k) ~ 15*n^4 / (4*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p/((p+1)*(p^3-1))) = 1.1392293101137663761606045655621290749920977339371831842000361508083066155... - Vaclav Kotesovec, Sep 20 2020

Extensions

Additional comments from Michael Somos, May 19 2000