A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A106279 Primes p such that the polynomial x^3-x^2-x-1 mod p has 3 distinct zeros.
47, 53, 103, 163, 199, 257, 269, 311, 397, 401, 419, 421, 499, 587, 599, 617, 683, 757, 773, 863, 883, 907, 911, 929, 991, 1021, 1087, 1109, 1123, 1181, 1237, 1291, 1307, 1367, 1433, 1439, 1543, 1567, 1571, 1609, 1621, 1697, 1699, 1753, 1873, 1907, 2003
Offset: 1
Keywords
Comments
This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step sequences, A000073 and A001644. The periods of the sequences A000073(k) mod p and A001644(k) mod p have length less than p. For a given p, let the zeros be a, b and c. Then A001644(k) mod p = (a^k+b^k+c^k) mod p. This sequence is the same as A033209 except for the initial term.
Links
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Crossrefs
Programs
-
Mathematica
t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 500}];Prime[Flatten[Position[t, 3]]]
A243651 Nonnegative integers of the form x^2+11y^2.
0, 1, 4, 9, 11, 12, 15, 16, 20, 25, 27, 36, 44, 45, 47, 48, 49, 53, 60, 64, 69, 75, 80, 81, 92, 93, 99, 100, 103, 108, 111, 115, 121, 124, 125, 132, 135, 144, 148, 155, 163, 165, 169, 176, 177, 180, 185, 188, 192, 196, 199, 201, 207, 212, 213, 220, 225, 236, 240, 243, 256, 257, 267, 268, 269, 275
Offset: 0
Keywords
Comments
Discriminant -44.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Primes: A033209.
Programs
-
Maple
fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i; dd:=4*a*c-b^2; if dd<=0 then error "Form should be positive definite."; break; fi; t1:={}; xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd))); ylim:=ceil( 2*sqrt(a*M/dd)); for x from 0 to xlim do for y from -ylim to ylim do t2 := a*x^2+b*x*y+c*y^2; if t2 <= M then t1:={op(t1),t2}; fi; od: od: t3:=sort(convert(t1,list)); t4:=[]; for i from 1 to nops(t3) do if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od: [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]]; end; fd(1,0,11,500);
A281295 Primes which cannot be written as x^2 + 11*y^2, where x, y > 0.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 263, 271, 277, 281, 283, 293, 307, 313, 317
Offset: 1
Keywords
Comments
Integers n that cannot be expressed as the product of two numbers of the form a + b*sqrt(-11), where a > 0 and b >= 0 (excluding 1 and n).
Crossrefs
Cf. A033209.
Programs
-
Magma
Sort([11] cat [p: p in PrimesUpTo(317) | NormEquation(11, p) eq false]);
Formula
a(n) ~ 6/5 * n log n.
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions