cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033275 Number of diagonal dissections of an n-gon into 3 regions.

Original entry on oeis.org

0, 5, 21, 56, 120, 225, 385, 616, 936, 1365, 1925, 2640, 3536, 4641, 5985, 7600, 9520, 11781, 14421, 17480, 21000, 25025, 29601, 34776, 40600, 47125, 54405, 62496, 71456, 81345, 92225, 104160, 117216, 131461, 146965, 163800, 182040, 201761, 223041, 245960
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-3,2,2) (n>=5). - Emeric Deutsch, May 13 2004
Number of short bushes with n+1 edges and 3 branch nodes (i.e., nodes with outdegree at least 2). A short bush is an ordered tree with no nodes of outdegree 1. Example: a(5)=5 because the only short bushes with 6 edges and 3 branch nodes are the five full binary trees with 6 edges. Column 3 of A108263. - Emeric Deutsch, May 29 2005

Crossrefs

2nd skew subdiagonal of A033282.

Programs

  • Mathematica
    a[4]=0; a[n_]:=Binomial[n+1,2]*Binomial[n-3,2]/3; Table[a[n],{n,4,43}] (* Indranil Ghosh, Feb 20 2017 *)
  • PARI
    concat(0, Vec(z^5*(5-4*z+z^2)/(1-z)^5 + O(z^60))) \\ Michel Marcus, Jun 18 2015
    
  • PARI
    a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3 \\ Charles R Greathouse IV, Feb 20 2017
    
  • Sage
    def A033275(n): return (binomial(n+1, 2)*binomial(n-3, 2))//3
    print([A033275(n) for n in range(4,50)]) # Peter Luschny, Apr 03 2020

Formula

a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3.
G.f.: z^5*(5-4*z+z^2)/(1-z)^5. - Emeric Deutsch, May 29 2005
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=5} 1/a(n) = 43/150.
Sum_{n>=5} (-1)^(n+1)/a(n) = 16*log(2)/5 - 154/75. (End)
E.g.f.: x*(exp(x)*(12 - 6*x + x^3) - 6*(2 + x))/12. - Stefano Spezia, Feb 21 2024