cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033306 Triangle of coefficients of ordered cycle-index polynomials: T(n,k) = binomial(n,k)*Bell(k)*Bell(n-k).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 6, 6, 5, 15, 20, 24, 20, 15, 52, 75, 100, 100, 75, 52, 203, 312, 450, 500, 450, 312, 203, 877, 1421, 2184, 2625, 2625, 2184, 1421, 877, 4140, 7016, 11368, 14560, 15750, 14560, 11368, 7016, 4140, 21147, 37260, 63144, 85260, 98280, 98280, 85260, 63144, 37260, 21147
Offset: 0

Views

Author

Keywords

Examples

			   1;
   1,  1;
   2,  2,   2;
   5,  6,   6,   5;
  15, 20,  24,  20, 15;
  52, 75, 100, 100, 75, 52;
  ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 80.

Crossrefs

Cf. A000110, row sums give A001861.
Columns include A000110 and A052889.
Cf. A000807.

Programs

  • Maple
    A033306 := proc(n,k)
        if k < 0 or k > n then
            0;
        else
            binomial(n,k)*combinat[bell](k)*combinat[bell](n-k) ;
        end if;
    end proc: # R. J. Mathar, Mar 21 2013
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n>0, add(
         (x^j+1)*b(n-j)*binomial(n-1, j-1), j=1..n), 1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Aug 30 2019
  • Mathematica
    t[n_, k_] := Binomial[n, k] * BellB[k] * BellB[n-k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

Formula

E.g.f.: exp(exp(x*y)+exp(x)-2).
Sum_{k=0..2n} (-1)^k * T(2n,k) = A000807(n). - Alois P. Heinz, Feb 13 2024

Extensions

Edited by Vladeta Jovovic, Sep 17 2003