A033306 Triangle of coefficients of ordered cycle-index polynomials: T(n,k) = binomial(n,k)*Bell(k)*Bell(n-k).
1, 1, 1, 2, 2, 2, 5, 6, 6, 5, 15, 20, 24, 20, 15, 52, 75, 100, 100, 75, 52, 203, 312, 450, 500, 450, 312, 203, 877, 1421, 2184, 2625, 2625, 2184, 1421, 877, 4140, 7016, 11368, 14560, 15750, 14560, 11368, 7016, 4140, 21147, 37260, 63144, 85260, 98280, 98280, 85260, 63144, 37260, 21147
Offset: 0
Examples
1; 1, 1; 2, 2, 2; 5, 6, 6, 5; 15, 20, 24, 20, 15; 52, 75, 100, 100, 75, 52; ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 80.
Programs
-
Maple
A033306 := proc(n,k) if k < 0 or k > n then 0; else binomial(n,k)*combinat[bell](k)*combinat[bell](n-k) ; end if; end proc: # R. J. Mathar, Mar 21 2013 # second Maple program: b:= proc(n) option remember; expand(`if`(n>0, add( (x^j+1)*b(n-j)*binomial(n-1, j-1), j=1..n), 1)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): seq(T(n), n=0..10); # Alois P. Heinz, Aug 30 2019
-
Mathematica
t[n_, k_] := Binomial[n, k] * BellB[k] * BellB[n-k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
Formula
E.g.f.: exp(exp(x*y)+exp(x)-2).
Sum_{k=0..2n} (-1)^k * T(2n,k) = A000807(n). - Alois P. Heinz, Feb 13 2024
Extensions
Edited by Vladeta Jovovic, Sep 17 2003