A033308 Decimal expansion of Copeland-Erdős constant: concatenate primes.
2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, 0, 3, 1, 0, 7, 1, 0, 9, 1, 1, 3, 1, 2, 7, 1, 3, 1, 1, 3, 7, 1, 3, 9, 1, 4, 9, 1, 5, 1, 1, 5, 7, 1, 6, 3, 1, 6, 7, 1, 7, 3, 1, 7, 9, 1, 8, 1, 1, 9, 1, 1
Offset: 0
Examples
0.235711131719232931374143475359616771737983899710110310710911312...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
- Glyn Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 149-166.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
Links
- T. D. Noe, Table of n, a(n) for n = 0..2000
- John M. Campbell, The prime-counting Copeland-Erdős constant, arXiv:2309.13520 [math.NT], 2023.
- A. H. Copeland and P. Erdős, Note on Normal Numbers, Bull. Amer. Math. Soc., Vol. 52, No. 10 (1946), pp. 857-860.
- Mikołaj Morzy, Tomasz Kajdanowicz, and Przemysław Kazienko, On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy, Complexity, Volume 2017 (2017), Article ID 3250301, p. 5.
- Simon Plouffe, Copeland-Erdos constant, the primes concatenated.
- Simon Plouffe, Copeland-Erdos constant, the primes concatenated.
- Eric Weisstein's World of Mathematics, Copeland-Erdős Constant.
Crossrefs
Cf. A030168 (continued fraction), A072754 (numerators of convergents), A072755 (denominators of convergents).
Cf. A000040 (primes), A097944 (row lengths if this is read as table), A228355 (digits of the primes listed in reversed order).
Cf. A033307 (Champernowne constant: analog for positive integers instead of primes), A007376 (digits of the integers, considered as infinite word or table), A066716 (decimals of the binary Champernowne constant).
See also A338072.
Programs
-
Haskell
a033308 n = a033308_list !! (n-1) a033308_list = concatMap (map (read . return) . show) a000040_list :: [Int] -- Reinhard Zumkeller, Mar 03 2014
-
Mathematica
N[Sum[Prime[n]*10^-(n + Sum[Floor[Log[10, Prime[k]]], {k, 1, n}]), {n, 1, 40}], 100] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *) N[Sum[Prime@n*10^-(n + Sum[Floor[Log[10, Prime@k]], {k, n}]), {n, 45}], 106] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *) IntegerDigits //@ Prime@Range@45 // Flatten (* Robert G. Wilson v Oct 03 2006 *)
-
PARI
default(realprecision, 2080); x=0.0; m=-1; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=x/10^m; for (n=0, 2000, d=floor(x); x=(x-d)*10; write("b033308.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
-
PARI
concat( apply( {row(n)=digits(prime(n))}, [1..99] )) \\ Yields this sequence; row(n) then yields the digits of prime(n) = n-th row of the table, cf. comments. - M. F. Hasler, Oct 25 2019
Formula
Equals Sum_{n>=1} prime(n)*10^(-A068670(n)). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006
Equals Sum_{i>=1} (p_i * 10^(-(Sum_{j=1..i} 1 + floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( i + Sum_{j=1..i} floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( Sum_{j=1..i} ceiling(log_10(1 + p_j))) )). - Daniel Forgues, Mar 26-28 2014
Comments