A033311
Positions of incrementally largest terms in continued fraction for Copeland-Erdős constant.
Original entry on oeis.org
1, 2, 4, 5, 6, 18, 36, 72, 89, 1557, 3728, 4730, 27642, 60322, 90720, 104378, 107183, 241453, 453796, 679114, 901262, 934243, 1298092, 5996127, 7360332, 76543031, 299039550, 382621530
Offset: 1
A224890
Positions of incrementally largest terms in continued fraction for Copeland-Erdős constant.
Original entry on oeis.org
0, 1, 3, 4, 5, 17, 35, 71, 88, 1556, 3727, 4729, 27641, 60321, 90719, 104377, 107182, 241452, 453795, 679113, 901261, 934242, 1298091, 5996126, 7360331, 76543030, 299039549, 382621529
Offset: 1
The c.f. of the Copeland-Erdős constant is [a_0; a_1, a_2, ...] = [0; 4, 4, 8, 16, 18, 5, 1, ...], so record terms occur at positions 0, 1, 3, 4, 5, ...
Cf.
A033310 (incrementally largest terms).
Cf.
A030168 (continued fraction for Copeland-Erdős constant).
A066707
Incrementally largest terms in the continued fraction for the constant given by Sum_{k>=0} A033308(k) / 2^k = 2.89104866587305422....
Original entry on oeis.org
2, 8, 10, 32, 39, 5903, 135598
Offset: 1
-
a = {}; Do[a = Append[a, IntegerDigits[ Prime[n]]], {n, 1, 5*10^4} ]; b = ContinuedFraction[ N[ FromDigits[{Flatten[a], 0}, 2], 5*10^4]]; c = -1; d = {}; Do[ If[b[[n]] > c, c = b[[n]]; d = Append[d, c]], {n, 1, 48336} ]; d
Showing 1-3 of 3 results.
Comments