cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033438 Number of edges in 6-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 20, 26, 33, 41, 50, 60, 70, 81, 93, 106, 120, 135, 150, 166, 183, 201, 220, 240, 260, 281, 303, 326, 350, 375, 400, 426, 453, 481, 510, 540, 570, 601, 633, 666, 700, 735, 770, 806, 843, 881
Offset: 0

Views

Author

Keywords

Comments

Apart from the initial term this is the elliptic troublemaker sequence R_n(1,6) (also sequence R_n(5,6)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Differs from A025708(n)+1 at 31st position.
Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Programs

Formula

a(n) = Sum_{k=0..n} A097325(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = +2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8).
G.f.: -x^2*(1+x+x^3+x^4+x^2) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^3 ).
a(n) = floor(5*n^2/12). - Peter Bala, Aug 12 2013
a(n) = Sum_{i=1..n} floor(5*i/6). - Wesley Ivan Hurt, Sep 12 2017