A033438 Number of edges in 6-partite Turán graph of order n.
0, 0, 1, 3, 6, 10, 15, 20, 26, 33, 41, 50, 60, 70, 81, 93, 106, 120, 135, 150, 166, 183, 201, 220, 240, 260, 281, 303, 326, 350, 375, 400, 426, 453, 481, 510, 540, 570, 601, 633, 666, 700, 735, 770, 806, 843, 881
Offset: 0
References
- Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.
Links
- K. E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials, arXiv:1108.3051 [math.NT], 2011-2014.
- Eric Weisstein's World of Mathematics, Turán Graph [_Reinhard Zumkeller_, Nov 30 2009]
- Wikipedia, Turán graph [_Reinhard Zumkeller_, Nov 30 2009]
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
Crossrefs
Programs
-
Mathematica
a[n_] := Floor[5n^2/12]; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Jul 31 2018, after Peter Bala *)
Formula
a(n) = Sum_{k=0..n} A097325(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = +2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8).
G.f.: -x^2*(1+x+x^3+x^4+x^2) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^3 ).
a(n) = floor(5*n^2/12). - Peter Bala, Aug 12 2013
a(n) = Sum_{i=1..n} floor(5*i/6). - Wesley Ivan Hurt, Sep 12 2017
Comments