A033451 Initial prime in set of 4 consecutive primes with common difference 6.
251, 1741, 3301, 5101, 5381, 6311, 6361, 12641, 13451, 14741, 15791, 15901, 17471, 18211, 19471, 23321, 26171, 30091, 30631, 53611, 56081, 62201, 63691, 71341, 75521, 77551, 78791, 80911, 82781, 83431, 84431, 89101, 89381, 91291, 94421
Offset: 1
Keywords
Examples
251, 257, 263, 269 are consecutive primes: 257 = 251 + 6, 263 = 251 + 12, 269 = 251 + 18.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Jens Kruse Andersen, The Largest Known CPAP's
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, arXiv:math/0404188 [math.NT], 2004-2007.
- B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167(2008), 481-547.
- OEIS wiki, Consecutive primes in arithmetic progression: CPAP with given gap, updated Jan. 2020
- Index entries for sequences related to primes in arithmetic progressions
Crossrefs
Programs
-
Maple
N:=10^5: # to get all terms <= N. Primes:=select(isprime,[seq(i,i=3..N+18,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2]]=[6,6,6], [$1..nops(Primes)-3])]; # Muniru A Asiru, Aug 04 2017
-
Mathematica
A033451 = Reap[ For[p = 2, p < 100000, p = NextPrime[p], p2 = NextPrime[p]; If[p2 - p == 6, p3 = NextPrime[p2]; If[p3 - p2 == 6, p4 = NextPrime[p3]; If[p4 - p3 == 6, Sow[p]]]]]][[2, 1]] (* Jean-François Alcover, Jun 28 2012 *) Transpose[Select[Partition[Prime[Range[16000]],4,1],Union[ Differences[ #]] == {6}&]][[1]] (* Harvey P. Dale, Jun 17 2014 *)
-
PARI
p=2;q=3;r=5;forprime(s=7,1e4,if(s-p==18 && s-q==12 && s-r==6, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Feb 14 2013
Comments