A033462 Exponential (or "EXP") transform of squares A000290.
1, 1, 5, 22, 125, 836, 6277, 52396, 479593, 4757680, 50738921, 577894604, 6990138685, 89376020800, 1203182518189, 16995248375116, 251135780602193, 3871961504546624, 62141329025501905, 1035979079450355532, 17907209511611407141, 320387246623657457056, 5924125441456047522005
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Column k=2 of A279636.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)*j^2*a(n-j), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Mar 30 2016
-
Mathematica
Range[0,20]! CoefficientList[Series[Exp[Exp[x](x+x^2)],{x,0,20}],x] Table[Sum[BellY[n, k, Range[n]^2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
PARI
N=33; x='x+O('x^N); egf=exp(x*(1+x)*exp(x)); Vec(serlaplace(egf)) /* Joerg Arndt, Sep 15 2012 */
Formula
E.g.f.: exp(exp(x)*(x+x^2)).
Comments