A033472 Number of n-vertex labeled graphs that are gracefully labeled trees.
1, 1, 2, 4, 12, 40, 164, 752, 4020, 23576, 155632, 1112032, 8733628, 73547332, 670789524, 6502948232, 67540932632, 740949762580, 8634364751264, 105722215202120, 1366258578159064, 18468456090865364, 262118487952306820
Offset: 1
Keywords
Examples
For n=3 we have 1-3-2 and 2-1-3, so a(3)=2.
References
- A. Kotzig, Recent results and open problems in graceful graphs, Congressus Numerantium, 44 (1984), 197-219 (esp. 200, 204).
Links
- Don Knuth and Noam Elkies, Table of n, a(n) for n = 1..31
- David Anick, Counting graceful labelings of trees: a theoretical and empirical study, Discrete Applied Mathematics 198 (2016), 65-81.
- Index entries for sequences related to trees
Programs
-
PARI
{ treedet(v, n) = n=length(v); matdet(matrix(n,n,i,j, if(i-j,-v[abs(i-j)], sum(m=1,n+1,if(i-m,v[abs(i-m)],0))))) } { graceful_tree_count(n, s,v,v1,v0)= if(n==1,1, s=0; v1=vector(n-1,m,1); v0=vector(n-1,m,if(m==1,1,0)); for(m=2^(n-2),2^(n-1)-1, v= binary(m) - v0; s = s + (-1)^(v*v1~) * treedet(v1-2*v) ); s/2^(n-2) ) } \\ Noam D. Elkies, Nov 18 2002 for(n=1,18,print1(graceful_tree_count(n),", ")) \\ Example of function call
Formula
a(n) = 2 * A337274(n) for n >= 3. - Hugo Pfoertner, Oct 05 2020
Comments