cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Glenn G. Chappell

Glenn G. Chappell's wiki page.

Glenn G. Chappell has authored 2 sequences.

A180636 Positive integers that are divisible by neither 8k-1 nor 8k+1, for all k > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 16, 19, 20, 22, 24, 26, 29, 32, 37, 38, 40, 43, 44, 48, 52, 53, 58, 59, 61, 64, 67, 74, 76, 80, 83, 86, 88, 96, 101, 104, 106, 107, 109, 116, 118, 122, 128, 131, 134, 139, 148, 149, 152, 157, 160, 163, 166, 172, 173, 176, 179, 181, 192
Offset: 1

Author

Glenn G. Chappell, Sep 13 2010

Keywords

Crossrefs

Cf. A047424. - Robert G. Wilson v, Oct 06 2010

Programs

  • Mathematica
    fQ[n_] := Union[ MemberQ[{1, 7}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 8]] == {False}; fQ[1] = True; Select[ Range@ 200, fQ] (* Robert G. Wilson v, Oct 06 2010 *)
  • Python
    # Works in Python 2 or 3
    import itertools
    for n in itertools.count(1):
        for k in range(1, 2+n//8):
            if n%(8*k-1)==0 or n%(8*k+1)==0:
                break
        else:
            print(n)

Extensions

More terms from Robert G. Wilson v, Oct 06 2010

A033472 Number of n-vertex labeled graphs that are gracefully labeled trees.

Original entry on oeis.org

1, 1, 2, 4, 12, 40, 164, 752, 4020, 23576, 155632, 1112032, 8733628, 73547332, 670789524, 6502948232, 67540932632, 740949762580, 8634364751264, 105722215202120, 1366258578159064, 18468456090865364, 262118487952306820
Offset: 1

Keywords

Comments

A graph with n edges is graceful if its vertices can be labeled with distinct integers in the range 0,1,...,n in such a way that when the edges are labeled with the absolute differences between the labels of their end-vertices, the n edges have the distinct labels 1,2,...,n.
The PARI/GP program below uses the Matrix-Tree Theorem and sums over {1,-1} vectors to isolate the multilinear term. It takes time 2^n * n^O(1) to compute graceful_tree_count(n). - Noam D. Elkies, Nov 18 2002
Noam D. Elkies and I have independently verified the existing terms and computed more, up to a(31). - Don Knuth, Feb 09 2021

Examples

			For n=3 we have 1-3-2 and 2-1-3, so a(3)=2.
		

References

  • A. Kotzig, Recent results and open problems in graceful graphs, Congressus Numerantium, 44 (1984), 197-219 (esp. 200, 204).

Crossrefs

Programs

  • PARI
    { treedet(v, n) = n=length(v); matdet(matrix(n,n,i,j, if(i-j,-v[abs(i-j)], sum(m=1,n+1,if(i-m,v[abs(i-m)],0))))) }
    { graceful_tree_count(n, s,v,v1,v0)= if(n==1,1, s=0; v1=vector(n-1,m,1); v0=vector(n-1,m,if(m==1,1,0)); for(m=2^(n-2),2^(n-1)-1, v= binary(m) - v0; s = s + (-1)^(v*v1~) * treedet(v1-2*v) ); s/2^(n-2) ) } \\ Noam D. Elkies, Nov 18 2002
    for(n=1,18,print1(graceful_tree_count(n),", ")) \\ Example of function call

Formula

a(n) = 2 * A337274(n) for n >= 3. - Hugo Pfoertner, Oct 05 2020