cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238015 Denominator of (2*n+1)!*8*Bernoulli(2*n,1/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Robert Israel, Feb 17 2014

Keywords

Comments

It appears that a(n) is 1 for n in A095736, 2 for n in A014312, 4 for n in A014313, 8 for n in A023688, 16 for n in A023689, 32 for n in A023690, 64 for n in A023691. - Michel Marcus, Feb 18 2014

Examples

			For n=15, (2*15+1)!*8*Bernoulli(2*15,1/2) = -79147239268966167007717425917182573906640625/2 so a(15) = 2.
		

Crossrefs

Cf. A033473.

Programs

  • Maple
    seq(denom((2*n+1)!*8*bernoulli(2*n,1/2)), n=0 .. 100);
  • Mathematica
    Table[Denominator[(2 n + 1)! 8 BernoulliB[2 n, 1/2]], {n, 0, 200}] (* Vincenzo Librandi, Feb 18 2014 *)

A238164 2^floor(log[2](n+1))*(2*n+1)!*Bernoulli(2*n,1/2).

Original entry on oeis.org

1, -1, 7, -465, 48006, -12072375, 6301495035, -12203470904625, 20180112406353900, -53495387545025175750, 216267236072968468547250, -1280630367874799320798794375, 10743714652441927865738713818750, -124178158916511109662405449217796875, 1930915681227482441797773554892002071875
Offset: 0

Views

Author

M. F. Hasler, Feb 18 2014

Keywords

Comments

Motivated by the original definition of A033473 which turned out to produce a non-integer sequence.

Programs

  • PARI
    n->(2*n+1)!*subst(bernpol(2*n,x),x,1/2)<<(log(n+1)\log(2))

A238163 a(n) is the nearest integer to 8*(2*n+1)! * Bernoulli(2*n,1/2).

Original entry on oeis.org

8, -4, 28, -930, 96012, -24144750, 12602990070, -12203470904625, 20180112406353900, -53495387545025175750, 216267236072968468547250, -1280630367874799320798794375, 10743714652441927865738713818750, -124178158916511109662405449217796875
Offset: 0

Views

Author

M. F. Hasler, Feb 18 2014

Keywords

Comments

See A033473 for the numerators and A238015 for the denominators of 8*(2*n+1)!*Bernoulli(2*n,1/2).
As Robert Israel remarks, this expression is no longer an integer for n = 15, 23, 27, 29, 30, 31, 39, 43, 45, 46, 47, ... That's why "nearest integer" has been prefixed. - M. F. Hasler, Feb 16 2014
It can be seen that the denominator of (2*n+1)! * Bernoulli(2*n,1/2) is never more than 2^log_2(n+1). This yields A238164 as an alternative way of producing an integer sequence based on (2n+1)! * Bernoulli(2*n,1/2).

Crossrefs

Programs

  • Mathematica
    a[n_] := Round[ (2 n + 1)! 8 BernoulliB[2 n, 1/2]]; Array[a, 14, 0] (* Robert G. Wilson v, Feb 17 2014 *)
  • PARI
    A238163=n->round(8*(2*n+1)!*subst(bernpol(2*n,x),x,1/2)) \\ M. F. Hasler, Feb 16 2014
Showing 1-3 of 3 results.