cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033505 Expansion of 1/(1 - 3*x - x^2 + x^3).

Original entry on oeis.org

1, 3, 10, 32, 103, 331, 1064, 3420, 10993, 35335, 113578, 365076, 1173471, 3771911, 12124128, 38970824, 125264689, 402640763, 1294216154, 4160024536, 13371648999, 42980755379, 138153890600, 444070778180, 1427385469761, 4588073296863, 14747534582170
Offset: 0

Views

Author

N. J. A. Sloane, Feb 13 2002

Keywords

Comments

From Greg Dresden, Jun 25 2022: (Start)
a(n) is the number of ways to tile, with squares and dominoes, a 2 X n board with one extra space at the end. Here is the board for n=3:
|||_|_
|||_|_|
and here is one of the a(3)=32 possible tilings of this board:
| |||_
|||___|
(End)

Crossrefs

Partial sums of A030186.

Programs

  • GAP
    a:=[1,3,10];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 14 2019
  • Magma
    I:=[1,3,10]; [n le 3 select I[n] else 3*Self(n-1)+Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 17 2018
    
  • Maple
    seq(coeff(series(1/(1-3*x-x^2+x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 14 2019
  • Mathematica
    CoefficientList[Series[1/(1-3x-x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3,1,-1}, {1,3,10}, 30] (* Vincenzo Librandi, Aug 17 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-3*x-x^2+x^3)) \\ G. C. Greubel, Oct 14 2019
    
  • Sage
    def A033505_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/(1-3*x-x^2+x^3)).list()
    A033505_list(30) # G. C. Greubel, Oct 14 2019
    

Formula

a(n) = 3*a(n-1) + a(n-2) - a(n-3). - Greg Dresden, Aug 16 2018