A033505 Expansion of 1/(1 - 3*x - x^2 + x^3).
1, 3, 10, 32, 103, 331, 1064, 3420, 10993, 35335, 113578, 365076, 1173471, 3771911, 12124128, 38970824, 125264689, 402640763, 1294216154, 4160024536, 13371648999, 42980755379, 138153890600, 444070778180, 1427385469761, 4588073296863, 14747534582170
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard M. Low and Ardak Kapbasov, Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1, Table 4.
- N. J. A. Sloane Notes on A030186 and A033505
- Index entries for linear recurrences with constant coefficients, signature (3,1,-1).
Crossrefs
Partial sums of A030186.
Programs
-
GAP
a:=[1,3,10];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 14 2019
-
Magma
I:=[1,3,10]; [n le 3 select I[n] else 3*Self(n-1)+Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 17 2018
-
Maple
seq(coeff(series(1/(1-3*x-x^2+x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 14 2019
-
Mathematica
CoefficientList[Series[1/(1-3x-x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3,1,-1}, {1,3,10}, 30] (* Vincenzo Librandi, Aug 17 2018 *)
-
PARI
my(x='x+O('x^30)); Vec(1/(1-3*x-x^2+x^3)) \\ G. C. Greubel, Oct 14 2019
-
Sage
def A033505_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(1/(1-3*x-x^2+x^3)).list() A033505_list(30) # G. C. Greubel, Oct 14 2019
Formula
a(n) = 3*a(n-1) + a(n-2) - a(n-3). - Greg Dresden, Aug 16 2018
Comments