cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033543 Expansion of (1 - sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)).

Original entry on oeis.org

1, 2, 5, 16, 62, 270, 1257, 6096, 30398, 154756, 800834, 4199720, 22269976, 119207942, 643277553, 3495713184, 19113486390, 105074982876, 580435709622, 3220217022144, 17935186513044, 100243540330188, 562080274898250, 3160904659483104, 17823384503589996, 100749266778698280
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A033321. - Philippe Deléham, Nov 26 2009
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 2 colors and those at a higher level come in 4 colors. Example: a(3)=16 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 2^3 = 8 paths of shape HHH, 2 paths of shape HUD, 2 paths of shape UDH, and 4 paths of shape UHD. - Emeric Deutsch, May 02 2011

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)) )); // G. C. Greubel, Oct 12 2019
    
  • Maple
    seq(coeff(series((1-sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)), x, n+2), x, n), n = 0..40); # G. C. Greubel, Oct 12 2019
  • Mathematica
    CoefficientList[Series[(1-Sqrt[(1-2x)(1-6x)])/(2x(2-3x)),{x,0,40}],x] (* Harvey P. Dale, Aug 12 2012 *)
  • PARI
    x='x+O('x^66); Vec( (1-sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    def A033543_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-sqrt((1-2*x)*(1-6*x)))/(2*x*(2-3*x)) ).list()
    A033543_list(40) # G. C. Greubel, Oct 12 2019

Formula

a(n) = A124575(n,0). - Philippe Deléham, Nov 26 2009
a(n) = Sum_{k=0..n} A052179(n,k)*(-2)^k. - Philippe Deléham, Nov 28 2009
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^n, M = an infinite square production matrix as follows (with the main diagonal (2,3,3,3,...)):
2, 1, 0, 0, ...
1, 3, 1, 0, ...
1, 1, 3, 1, ...
1, 1, 1, 3, ...
... (End)
D-finite with recurrence: 2*(n+1)*a(n) = (19*n-5)*a(n-1) - 12*(4*n-5)*a(n-2) + 36*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 6^(n+1/2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012