A033549 Numbers k such that sum of digits of k-th prime equals sum of digits of k.
32, 56, 88, 175, 176, 182, 212, 218, 227, 248, 293, 295, 323, 331, 338, 362, 377, 386, 394, 397, 398, 409, 439, 446, 457, 481, 499, 508, 563, 571, 595, 599, 635, 637, 655, 671, 728, 751, 752, 755, 761, 767, 779, 820, 821, 826, 827, 847, 848, 857, 869, 878
Offset: 1
Examples
131 is the 32nd prime and sum of digits of both is 5.
References
- Proposed by G. L. Honaker, Jr.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a033549 n = a033549_list !! (n-1) a033549_list = filter ((== 0) . a090431) [1..] -- Reinhard Zumkeller, Mar 16 2014
-
Mathematica
Select[Range[1000],Total[IntegerDigits[#]]==Total[IntegerDigits[ Prime[#]]]&] (* Harvey P. Dale, May 05 2011 *)
-
PARI
is(n,p=prime(n))=sumdigits(n)==sumdigits(p) \\ Charles R Greathouse IV, Feb 07 2017
-
Python
from sympy.ntheory.factor_ import digits from sympy import prime print([n for n in range(1, 1001) if sum(digits(n)[1:])==sum(digits(prime(n))[1:])]) # Indranil Ghosh, Jun 27 2017
Comments