cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033596 a(n) = (n^2 - 1)*(n^2 - 3).

Original entry on oeis.org

3, 0, 3, 48, 195, 528, 1155, 2208, 3843, 6240, 9603, 14160, 20163, 27888, 37635, 49728, 64515, 82368, 103683, 128880, 158403, 192720, 232323, 277728, 329475, 388128, 454275, 528528, 611523, 703920, 806403, 919680, 1044483, 1181568, 1331715, 1495728, 1674435
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (n^2), A000583 (n^4), A082109.

Programs

  • Magma
    [(n^2-1)*(n^2-3) : n in [0..30]]; // Wesley Ivan Hurt, Oct 30 2014
    
  • Maple
    A033596:=n->(n^2-1)*(n^2-3): seq(A033596(n), n=0..30); # Wesley Ivan Hurt, Oct 30 2014
  • Mathematica
    Table[(n^2 - 1)*(n^2 - 3), {n, 0, 30}] (* or *)
    CoefficientList[Series[3 (1 - 5 x + 11 x^2 + x^3)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 30 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{3,0,3,48,195},40] (* Harvey P. Dale, Nov 20 2024 *)
  • PARI
    vector(31, n, my(m=n-1); (m^2-1)*(m^2-3)) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [(n^2-1)*(n^2-3) for n in (0..30)] # G. C. Greubel, Mar 05 2020

Formula

From Wesley Ivan Hurt, Oct 30 2014: (Start)
G.f.: 3*(1 -5*x +11*x^2 +x^3)/(1-x)^5.
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5).
a(n) = (n^2-1)*(n^2-3) = (A000290(n)-1)*(A000290(n)-3) = A000583(n) - A082109(n+1). (End)
E.g.f.: (3 - 3*x + 3*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Mar 05 2020