A033714 Number of zeros in numbers 0 to 999..9 (n digits).
1, 10, 190, 2890, 38890, 488890, 5888890, 68888890, 788888890, 8888888890, 98888888890, 1088888888890, 11888888888890, 128888888888890, 1388888888888890, 14888888888888890, 158888888888888890, 1688888888888888890, 17888888888888888890, 188888888888888888890
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- John K. Sikora, On the High Water Mark Convergents of Champernowne's Constant in Base Ten, arXiv:1210.1263 [math.NT], 2012.
- Index entries for linear recurrences with constant coefficients, signature (21,-120,100).
Programs
-
Magma
[(9*n*10^n-10*10^n+100)/90: n in [1..20]]; // Vincenzo Librandi, Jul 01 2014
-
Mathematica
a[1] = 1; a[n_] := a[n] = 9*10^(n-2)*(n-1) + a[n-1]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jul 13 2012 *) f[n_] := 1 + Sum[9 m*10^(m - 1), {m, n}]; Array[f, 18, 0] (* Robert G. Wilson v, Jun 29 2014 *) LinearRecurrence[{21,-120,100},{1,10,190},20] (* Harvey P. Dale, Dec 03 2021 *)
-
PARI
Vec(-x*(100*x^2-11*x+1)/((x-1)*(10*x-1)^2) + O(x^100)) \\ Colin Barker, Jan 27 2015
Formula
a(n) = 10^(n-1)*n - (1/9)*10^n + 10/9. - Robert Israel, Jun 30 2014
G.f.: -x*(100*x^2-11*x+1) / ((x-1)*(10*x-1)^2). - Colin Barker, Jan 27 2015
From Bernard Schott, Nov 20 2022: (Start)
a(n) = A033713(n) + 1.
a(n+1) = a(n) + 9 * A053541(n). (End)
Extensions
More terms from Erich Friedman
Comments