A033718 Product theta3(q^d); d | 5.
1, 2, 0, 0, 2, 2, 4, 0, 0, 6, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 8, 0, 0, 4, 2, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 0, 6, 4, 0, 0, 6, 0, 0, 0, 0, 8, 0, 4, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 0, 0, 8, 0, 4, 0, 0, 4, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 2, 0, 0, 0, 2, 12
Offset: 0
Keywords
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- A. Berkovich and H. Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, arXiv:math/0611300 [math.NT], 2006-2007.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
S:= series(JacobiTheta3(0,q)*JacobiTheta3(0,q^5), q, 1001): seq(coeff(S,q,j),j=0..1000); # Robert Israel, Dec 22 2015
-
Mathematica
terms = 127; s = EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^5] + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017 *)
-
PARI
{a(n)=if(n<1, n==0, qfrep([1,0;0,5],n)[n]*2)} /* Michael Somos, Aug 13 2006 */
-
PARI
N=666; x='x+O('x^N); T3(x)=1+2*sum(n=1,ceil(sqrt(N)),x^(n*n)); Vec(T3(x)*T3(x^5)) /* Joerg Arndt, Sep 21 2012 */
Formula
Theta series of lattice with Gram matrix [1 0 / 0 5].
Expansion of phi(q)phi(q^5) in powers of q where phi(q) is a Ramanujan theta function.
Euler transform of period 20 sequence [ 2, -3, 2, -1, 4, -3, 2, -1, 2, -6, 2, -1, 2, -3, 4, -1, 2, -3, 2, -2, ...]. - Michael Somos, Aug 13 2006
If p is prime then a(p) is nonzero iff p is in A033205.
0=a(n)a(2n) and 2*A035170(n) = a(n) + a(2n) if n>0. - Michael Somos, Oct 21 2006
a(n) is nonzero iff n is in A020669. - Robert Israel, Dec 22 2015
a(0) = 1, a(n) = (1+(-1)^t)b(n) for n > 0, where t is the number of prime factors of n, counting multiplicity, which are == 2,3,7 (mod 20), and b() is multiplicative with b(p^e) = (e+1) for primes p == 1,3,7,9 (mod 20) and b(p^e) = (1+(-1)^e)/2 for primes p == 11,13,17,19 (mod 20). (This formula is Corollary 3.3 in the Berkovich-Yesilyurt paper) - Jeremy Lovejoy, Nov 12 2024
Comments